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S U M M A R Y
A key aspect of geophysical inversion is the ability to model the earth with a low dimensional
representation. There exist various approaches to solve the inverse problem. However, most
methods do not automatically adapt inverse model complexity or the number of active model
parameters as dictated by data noise and sparse receiver coverage, do not quantify inverse model
uncertainty or do not work equally well for 1-D, 2-D or 3-D earth models. Low-frequency
electromagnetic (EM) inversion, for example, can require for 3-D problems upwards of 106

cells to forward model. Only a small fraction of these cells are effectively resolvable and
there are significant trade-offs between them. To address such problems and get around these
limitations we present a novel approach to earth model parametrization by using a Gaussian
Processes (GP) machine learning (ML) technique, coupled with a parsimonious Bayesian
trans-dimensional (trans-D) Markov chain Monte Carlo sampling scheme. One aspect that
sets our approach apart from recent spatial dimension agnostic algorithms in the trans-D or
ML literature is the ability to specify inversion property priors directly, as opposed to doing
so in a transform domain of the property. We develop the theory, describe the effects of
specifying different geological priors and apply the trans-D-GP method to a 1-D controlled
source EM and 2-D nonlinear regression problem, using actual field data from the Northwest
Australian Shelf for the former. The key advantages in using our method are the simplicity
of prior specification, parsimonious low dimensional representations and ease of representing
large-scale models in 1-D, 2-D or even 3-D with the same parametrization and computer code.
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1 I N T RO D U C T I O N

Geophysical electromagnetic (EM) inversion with linearized,
gradient-based methods are efficient, well understood and have been
extensively used (e.g. Constable et al. 1987; MacGregor & Sinha
2000; Newman & Alumbaugh 2000; de Groot-Hedlin & Constable
2004; Abubakar et al. 2008; Key 2009; Mittet & Gabrielsen 2013;
Sasaki 2013; Myer et al. 2015). However, to stabilize matrix in-
versions required to converge to a solution, keep the solution close
to a preferred model and enforce smoothness in the solution, some
form of regularization must be imposed for the inverted solution to
be meaningful. Most regularization schemes can be interpreted in a
Bayesian framework in which regularization is looked at as a means
of incorporating additional information to arrive at a desired solu-
tion (see Calvetti & Somersalo 2018 for a detailed discussion). This
requires that we interpret the solution model as a random variable
instead of the solution possessing one single value.

In a Bayesian framework, given observed data with a description
of the data noise, we aim to find the distribution of data-compatible

solution values, through a forward model and prior knowledge (or
belief) about the solution. This distribution, known as the posterior
distribution encapsulates our state of knowledge (and hence uncer-
tainty) about the solution space (in our case, the earth’s subsurface
conductivity). A particularly engaging discussion around the legit-
imate use of priors in this context can be found in Scales & Snei-
der (1997). Bayes’ theorem bridges posterior and prior knowledge
through the acquired EM data. This specification of prior knowledge
(e.g. Hansen & Minsley 2017) and its parametrization is often over-
looked in Bayesian inversions of geophysical data (see Pasquale &
Linde 2017 for a discussion). Designing an informative prior that ac-
curately reflects the earth’s spatial character given the resolution we
expect our data to possess is key to drawing meaningful inferences
about subsurface geology. While this may sound like a chicken-
and-egg situation, a Bayesian perspective lays bare the fact that we
must make choices in designing an inversion scheme, whether it
be regularized or otherwise implemented. With choices based on
the physics of the problem, as we will discuss in this work, well-
designed Bayesian algorithms can infer the resolution with which
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we can ‘see’ into the earth. Recent geophysical work highlighting
the importance of choosing a priori appropriate basis functions
in a Bayesian framework can be found in Hawkins & Sambridge
(2015); Pasquale & Linde (2017) and Ray et al. (2017). In the field
of hydrogeophysics, Cordua et al. (2012); Lochbühler et al. (2015)
and Laloy et al. (2017) have used Training Image (TI) based priors
for this purpose. Training Images, through multiple-point-statistics
(Strebelle 2002) provide a realistic specification of subsurface hy-
drology. However, sampling the posterior distribution either through
a Markov chain Monte Carlo (McMC) scheme or optimizing with
gradient descent is difficult as consecutively generated TIs in a naive
implementation usually have disparate properties. To overcome this
issue, Laloy et al. (2018) have successfully used Generative Adver-
sarial Networks (GANs; Goodfellow et al. 2014), a recent machine
learning (ML) technique to train a low-dimensional latent space
which can effectively mimic a high-dimensional solution space.
In their case, the high-dimensional target to mimic is the earth’s
spatial hydrological variation as represented by TIs. The reduced
dimension latent space is then used as the solution basis in which
conventional McMC inversion is carried out, thus guaranteeing that
posterior solution models are geologically realistic. This approach
is promising, as it has two sought-after qualities in any geophysi-
cal inversion—geological realism and low dimension—which are
often at odds with each other. The former quality is necessary for
the solution models to be interpretable, while the latter is required
for the solution to be stable and trustworthy. This is a geological
restatement of the variance-bias trade-off (e.g. Lever et al. 2016)—
simple earth models tend to be biased about earth structure but
have low variance, while complicated earth models tend to behave
in the opposite manner. However, it is unclear how to choose the
low, fixed dimension of the latent space and there are many hy-
perparameters (nuisance variables) to be tuned in the training of
the GAN. The training of GANs in a stable manner is not a trivial
process (Laloy et al. 2017), though it may well be possible using
techniques such as Bayesian Optimization (Shahriari et al. 2016)
and worthwhile for many near-surface geophysical problems. How-
ever, for intermediate-to-deep earth geophysics, there is not enough
prior knowledge to know what a TI should look like. Further, given
that low-frequency information (acquired surface geophysical data)
cannot with great fidelity reproduce high wavenumber information
at depth (earth properties), it may not be useful to specify high
wavenumber (highly detailed) priors. This is because the posterior
model ensemble will marginalize to produce little detail at depth –
we can think of this as being akin to a high standard deviation of
geophysical properties with depth.

In such cases, as with low-frequency EM inversion, for prior rep-
resentation we propose to use Gaussian Processes (GPs), which have
well understood qualities of spatial variability—see Rasmussen &
Williams (2006) for a thorough review. By using GPs in conjunction
with the trans-dimensional (trans-D) McMC method (Green 1995;
Malinverno 2002; Bodin & Sambridge 2009) for model solution
dimension reduction, we can effectively model high dimension, but
keep the number of inverted parameters small (i.e. achieve par-
simony, Malinverno 2002). This small model dimension is what
makes McMC tractable or gradient inversion stable (Laloy et al.
2017). As is usual with trans-D methods, the posterior model en-
semble will quantify the nonlinear spatial resolution of the data.

2 T H E O RY

2.1 Gaussian processes

A Gaussian process is a stochastic process that is completely deter-
mined by its mean and covariance. As we will show, it is defined
by priors and posteriors over functions. Broadly speaking, GPs are
a method of non-parametric regression that do not require a fixed
discretization, providing both a prediction and uncertainty around
the prediction. GPs have been successfully used in many fields
including spatial statistics (Cressie 1992), statistics (Williams &
Rasmussen 1996), robotics (Ko & Fox 2009), weather prediction
(Chen et al. 2014), reinforcement learning (Deisenroth et al. 2015)
and automated image analysis (Luthi et al. 2018). In the ML litera-
ture, they have been extensively used to model ‘black box’ functions
and even optimize them (e.g. Snoek et al. 2012). In the geosciences,
they have been known by the name ‘kriging’ (Krige 1952; Pyrcz
& Deutsch 2014) and are closely related to radial basis functions
(Broomhead & Lowe 1988).

To gain insight into the workings of GPs, we follow the Bayesian
exposition of Williams & Rasmussen (1996) through an example
shown in Fig. 1. First, we specify prior notions of spatial smoothness
through a covariance, typically defined by a similarity kernel which
ensures that spatially close locations have similar values. Training
observations are then regarded as realizations from an updated, pos-
terior multivariate Gaussian. Test outputs at all unobserved points
are then simply conditional realizations from the posterior Gaus-
sian. The mathematics behind this methodology, referring to this
example, is explained in detail in the remainder of this section.

In mathematical form, following the textbook of Murphy (2012),
we write this as follows:[

m
m∗

]
∼ N

(
0,

[
Km K∗
Kt

∗ K∗∗

])
, (1)

where the vector of values m ∈ R
ntrain has been observed at spatial

locations x ∈ R
ntrain×nd . nd is the number of spatial dimensions under

consideration. m∗ ∈ R
ntest is a vector specifying predicted values at

all desired spatial locations x∗ ∈ R
ntest×nd . To define the covariance

matrix

[
Km K∗
Kt

∗ K∗∗

]
in (1), we first define the following correlation

function:

K (y, y′) = exp
(

− 1

2
[y − y′]t Cλ

−1[y − y′]
)
, where y ∈ R

nd . (2)

y and y′ are any two points in nd spatial dimensions. The square
of the correlation length scale in each spatial dimension is spec-
ified along the diagonal of a symmetric positive definite matrix
Cλ ∈ R

nd ×nd and spatial anisotropy (rotation) by the off-diagonal
entries. Geologically speaking, this matrix encapsulates our prior
knowledge of the length scales and predominant strike directions to
be represented by the GP. In the example shown in Fig. 1, with nd =
1 (one spatial dimension), Cλ is a scalar. A similarity length scale λ

is set equal to 0.1 spatial units a priori, with C−1
λ = 1

λ2 = 1
0.12 . With

ntrain observed training points located at x, we can define a matrix
K ∈ R

ntrain×ntrain using (2) for all pairwise distances between training
points. We then define Km ∈ R

ntrain×ntrain through the addition of an
additive noise term such that

Km = K + σ 2
m, (3)

where σ 2
m is a diagonal covariance matrix of the observed additive

noise in m at the locations x. For the example in Fig. 1, σ 2
m was

set diagonal with the a priori constant value 0.0025 across the
diagonal. If we would like to predict m∗ at ntest locations x∗ then
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Figure 1. Top left-hand panel: a prior covariance Cprior defined by a smoothly decaying stationary similarity kernel such that values differing by up to 0.1 units
in x have high correlation. Top right-hand panel: 50 random realizations from a Gaussian with zero mean and covariance Cprior. Bottom left-hand panel: a GP
posterior covariance formed by modifying the prior covariance by bringing in 10 training observations. Bottom right-hand panel: The 10 training observations
are shown with magenta circles. The unknown true function being approximated is shown in black. The inferred posterior mean is shown in dashed blue. Also
shown are 50 random test realizations from a Gaussian with mean set to the posterior mean and covariance Cposterior. Henceforth we will refer to the mean of
all posterior test realizations simply as the GP mean. We should note that regions in x with fewer training points have high posterior variance and vice versa.

K∗ ∈ R
ntrain×ntest is defined using (2) and pairs of (x, x∗). Finally, K∗∗

is an ntest × ntest matrix defined using (2) for all pairwise distances
between testing points. For the example in Fig. 1, K∗∗ provides the
prior covariance matrix (top left), and one way to think of this is
that K∗∗ has no input from training data and is purely derived from
prior knowledge.

The advantage of this formalism expressed through Gaussians is
that the posterior conditional GP in (1), again following Murphy
(2012), can be written as

p(m∗|x∗, x, m) = N (m∗|μ∗, �∗), (4)

where analytical formulae allow us to write out this normal proba-
bility for the random variable m∗ with mean μ∗ and covariance �∗
as follows:

μ∗ = Kt
∗K−1

m m, (5)

and

�∗ = K∗∗ − Kt
∗K−1

m K∗. (6)

A GP fitting exercise as shown in Fig. 1 is a classic example of
Bayesian ‘probability updating.’ We start with a prior notion (top
row of Fig. 1) and update it as training data comes in. This update
is according to a posterior Gaussian described entirely by mean (5)
and covariance (6) as shown in the bottom row of Fig. 1. We can
explicitly see the prior covariance K∗∗ being updated to the posterior
by the subtraction of the term Kt

∗K−1
m K∗ in (6). The theory presented

here has been for a zero mean GP without loss of generality. For

instance, in the example shown in Fig. 1, the mean of posterior test
realizations (or the GP mean) μ∗ was calculated by de-meaning
m ∈ R

10 and then using (5), finally adding to this quantity the mean
of the 10 training data points provided in m. The 50 test posterior
realizations in the bottom right-hand panel of Fig. 1 were obtained
by randomly sampling from a Gaussian with the aforementioned
GP mean and covariance provided by (6).

In the work presented here, we do not use the GP for inferring
earth properties directly, which is how we depart from the realm
of geostatistics—where the posterior Gaussian as represented by
the mean and variance given by eqs (5) and (6) would completely
statistically represent the earth. Instead, we use the GP mean (5)
as a sparse yet smooth representation of earth model properties,
ideal for low-frequency geophysical inverse problems such as EM
inversion. To illustrate how we use the GP mean as a statistical
interpolator, we turn to another simple example shown in Fig. 2.
Using 10–15 training points m, randomly selected in x, we are
able to approximate a smooth, unknown (to the GP) function m∗
everywhere at the test locations x∗. This is done by using eq. (5)
and the 1-D version of (2) with a similarity length scale λ set equal
to 0.05 spatial units a priori, with C−1

λ = 1
λ2 = 1

0.052 . The matrix
σ 2

m was set to be diagonal with the a priori constant value 0.0025
across the diagonal. Now if we were to rotate the figure by 90◦, we
could imagine the true function to be a profile of log-resistivity in
the earth, to be resolved through a parsimonious inversion scheme
inverting surface EM data.
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Figure 2. Using 10 and then 15 randomly selected training points to approximate an unknown function with a GP. The true function is plotted in dashed
black, and the inferred GP mean is plotted with a blue solid line. Note how the GP approximation improves with the addition of more points. In this work, we
propose placing GP training points in a solution model space (e.g. earth conductivity) proportional to a Bayesian inversion posterior probability. The placement
and number of training points will be guided by both prior information and the model likelihood (i.e. geophysical data misfit) through a ‘birth-death’ trans-D
scheme (Geyer & Møller 1994).

In order to use a GP as presented in this section, we need in ad-
dition to the training data, prior knowledge of σ 2

m and length scales
in Cλ. In Section 3.1 we detail the effects of choosing different val-
ues for these prior parameters. Generally speaking for regression
problems (as opposed to geophysical or geological problems), if
prior knowledge is not readily available, one method to obtain it is
through cross-validation (see Friedman et al. 2001 for details). Other
methods to obtain these hyperparameters are through hierarchical
sampling (e.g. Gelman et al. 1995) or by making maximum like-
lihood estimates of these parameters (e.g. Plagemann et al. 2008),
which we will detail in Section 5.

With trans-D-GP we can add and subtract training points via
trans-D ‘birth’ and ‘death’ McMC steps (Geyer & Møller 1994;
Green 1995; Sambridge et al. 2006) to represent an earth property
model, say conductivity, using a GP. The key advantage of this
approach lies in the fact that with the same formalism presented
in this section we can represent a 1-D, 2-D or 3-D earth—instead
of layers for a 1-D earth, Voronoi cells for a 2-D earth or other
parametrizations in 3-D. It follows that the same inversion code
and GP parametrization can be used without the computational
geometry overhead required to go from 1-D to 2-D or 3-D earth
models. The most costly parts of earth model construction are the
matrix operations in (5). However, unlike in geostatistics, we are
not drilling the earth to get more training samples of conductivity
to improve the GP—we intend to use EM data, which at best only
smoothly resolve the earth’s subsurface. We can use a parsimonious
‘training’ set m, which can be updated via a trans-D Bayesian
inversion scheme that samples according to the data misfit. With
Bayesian parsimony we will show that low-frequency inversion,
even in 2-D, requires model representation with m ∈ R

k , where k
need not exceed 100. This makes the calculation of (5) feasible
through Cholesky decomposition for the inversion of Km . Further,
only small parts of Km and K∗ in (5) need to be updated at every
trans-D McMC step, thus obviating the need to reconstruct a large
matrix with successive iterations. Using a single thread on a 2.8 GHz
laptop processor, for a 2-D earth model with k = 100 representing

201 × 201 cells, a mean time of 0.074 s was required to update
a model from k = 100 to k = 101. This is a typical sampling
step without the forward call in a trans-D McMC iteration. Further
decreases in computation time can be brought about by storing only
half of Km and updating the Cholesky decomposition instead of
doing a new decomposition every time Km changes, multithreading
and/or using hierarchical off diagonal low-rank (HODLR) methods
(Ambikasaran et al. 2016).

Although we have only investigated smooth kernel functions in
the GP, it is possible to use the Matérn family of kernels to define
K in (2) and model sharp discontinuities. We can also use a non-
stationary kernel as described in Section 5. Further details on various
types of kernel functions can be found in chapter 4 of Rasmussen
& Williams (2006). Finally, representation of multiple earth prop-
erties at the same spatial location, say, for example, conductivity
anisotropy in terms of a horizontal and vertical conductivity, can be
modelled by a GP through the use of covariance between these prop-
erties as detailed in various geostatistical approaches (e.g. Cressie
1992).

2.2 Bayesian trans-D inversion

For the purpose of probabilistic inversion, trans-D McMC is well
suited for sampling earth models m of variable dimension k. Trans-
D inversion (Sambridge et al. 2006) is based on birth/death Monte
Carlo (Geyer & Møller 1994) and the more general Reversible Jump
McMC method (Green 1995). Previously, for a 1-D earth model,
researchers have sampled over a variable number of layers (Malin-
verno & Leaney 2000; Minsley 2011; Bodin et al. 2012b; Dettmer
et al. 2015; Ray et al. 2016; Blatter et al. 2018; Gao & Lekić 2018).
For 2-D models, Voronoi representations with different numbers of
cells have been widely used (e.g. Bodin & Sambridge 2009; Dettmer
et al. 2014; Ray et al. 2014; Galetti et al. 2015; Saygin et al. 2016;
Galetti & Curtis 2018). In effect, the trans-D algorithm via Bayes’
theorem performs the task of model selection with regard to the
complexity of the model (i.e. number of dimensions k). The fact
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1710 A. Ray and D. Myer

Figure 3. Sampling the prior for mk , xk and related marginal distributions. The dashed line represents a uniform prior. The sampled marginal PDFs are
approximately uniform as well, indicating that our prior specifications have been honoured by the implemented trans-D McMC sampler.

Figure 4. Left-hand panel: resulting marginal PDFs on the resistivity, that is, μ∗ after sampling prior m in Fig. 3. Right-hand panel: accompanying CDFs of
resistivity at every depth, with each colour representing a quantile. The stair-step resistivity model to be inverted with this prior specification is shown in black.
The 98 % credible interval is indicated by the dashed lines, with only 2 % of sampled resistivities outside this zone.

that models are neither overfit nor underfit is based on the idea
of Bayesian parsimony, introduced to geoscience by Malinverno
& Leaney (2000) and Malinverno (2002). An ‘Occam factor’ that
penalizes overly complicated models is built into the framework

of Bayes’ theorem when formulated appropriately (MacKay 2003).
Galetti & Curtis (2018) point out that this is not as straightforward
as was previously assumed for trans-D and this issue is discussed
further in Appendix A. Theoretically speaking, the Bayesian model
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Figure 5. From top to bottom: three different correlations lengths λ = 100, 25 and 50 m chosen a priori and the resulting inversion posteriors. Note how
assuming a longer correlation length provides a more optimistic picture of uncertainty—simpler models have less variance.

selection principles demonstrated for 1-D and 2-D earth models are
equally applicable for 3-D inversion. However, Hawkins & Sam-
bridge (2015) point out that computationally efficient parametriza-
tions for trans-D problems in 2-D or 3-D (e.g. Piana Agostinetti
et al. 2015; Burdick & Lekić 2017; Belhadj et al. 2018; Zhang
et al. 2018) are not easy to construct (though it is certainly possible
as the aforementioned 3-D applications show), or the specification

of prior knowledge about geometric structure is difficult. The re-
cent work of Hawkins & Sambridge (2015) has to some extent
successfully overcome this issue. They demonstrate that any basis
function set that is representable by a tree structure can be used as a
valid model representation for trans-D inversion. As a consequence,
tree-based trans-D is agnostic to the spatial dimensionality of the
earth model, be it 1-D, 2-D or 3-D. This is a promising research
route that allows us to tackle difficult high-dimensional problems
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1712 A. Ray and D. Myer

Figure 6. Stationary convergence statistics for λ = 50 m. Top: the number of training points k as a function of McMC sample number. Middle: the negative
log likelihood, or the argument of the exponential in (8) together with a constant. This is a proxy for the χ2 misfit when the data error is considered unknown.
Bottom: Location of the unbiased T = 1 chain for carrying out posterior inference. Since we are using parallel tempering and exchanging temperatures between
chains to facilitate navigation of ‘peaky’ likelihoods, this plot shows a healthy exchange of temperatures indicative of good ‘chain mixing’ and effective
sampling.

such as probabilistic seismic full waveform inversion (see Ray et al.
2017), without making impractically limiting constraining assump-
tions about the posterior distribution. However, tree-based trans-D
requires the specification of priors in a wavelet or other transform
domain (e.g. Mallat 1989). This is not intuitive, requires some ex-
perimentation and abrupt cutoffs in the wavelet transform domain
can lead to edge effects in the space domain. Calculating the prior
probability of a dimension k requires a particularly clever ‘memo-
rized’ computation (similar to using a lookup table) with the use of
Big Integers to avoid integer overflow while counting arrangements
of trees. Further, arbitrary earth model aspect ratios require the jux-
taposition of more than one tree. While these difficulties are clearly
not insurmountable (Dettmer et al. 2016; Hawkins et al. 2017),
the trans-D-GP method avoids them altogether. In particular, prior
specification with a different length scale in each dimension can be
made in the familiar space domain as described in the following
section.

2.3 Bayes’ theorem

For observed data d and earth models m we can write:

p(m|d) ∝ p(d|m)p(m). (7)

Reading from right to left, p(m) is the prior probability of m, which
we know independent of the observations d. We re-assess our prior
notion of m by carrying out an EM experiment that shows us how

likely it is that m fits the observations. This weight is given by the
likelihood function p(d|m). The result of re-weighting or updating
our prior notion by the likelihood provides the posterior probability
of observing the model m. The posterior probability is represented
by the term p(m|d).

The likelihood function p(d|m) for Gaussian data noise can be
written as:

L(m) = p(d|m) = 1√|2πCd|

× exp

(
− 1

2

[
f(m) − d

]t
C−1

d

[
f(m) − d

])
,(8)

where [f(m) − d] is the vector of misfit between the forward model
calculation and the data for the model m. The covariance matrix of
data errors is given by Cd. To be clear, f(m) represents the forward
calculation for a k parameter trans-D model as represented by a GP
mean. A k parameter prior model probability can be written as

p(m) = p(mk, xk, k), (9)

where mk is a vector of GP ‘training’ resistivities. xk is a vector in
R

k×nd that specifies the locations of mk . nd is the number of spatial
dimensions of the model (e.g. nd = 2 for 2-D). Using the chain rule
of probabilities, we can write:

p(mk, xk, k) = p(mk |xk, k)p(xk |k)p(k). (10)
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If we assume that each of k training resistivities can be independently
and uniformly sampled within a log resistivity range �ρ, and that we
can arrange them in any of k! ways uniformly within a length, area
or volume given by

∏nd
i=1 �xi , we can rewrite the above equation

as

p(mk, xk, k) = 1

�ρk

k!

(
∏nd

i=1 �xi )k
p(k). (11)

Common choices for p(k), the prior probability on the number of in-
terfaces are uniform p(k) = 1

kmax−kmin+1 as we have used in our work

here, or the Jeffreys (1939) prior where p(k) = 1
k . The Jeffrey’s prior

is particularly useful in cases when the observed geophysical data
are not informative. We highlight here that all prior specifications
in (11) are done in the familiar domains of log-resistivity ρ and
space x, irrespective of the spatial dimension nd of the earth model.
We have tacitly omitted explicit mention of the length scales in Cλ,
but they need to be specified a priori as can be seen through eqs (9),
(5) and (2). We will describe the effects of selection of λ in detail
in the next section and later in the text.

We repeat the process of finding the posterior probability p(m|d)
for various models m admissible by our prior notions until we
obtain an ensemble of models representative of the probability den-
sity function or PDF p(m|d). For the trans-D method we do this
sampling using the Metropolis–Hastings–Green McMC algorithm
(Metropolis et al. 1953; Hastings 1970; Green 1995; Hastie & Green
2012). Sampling proportional to the posterior probability is carried
out by using the following acceptance probability to move from
model m to m′ in the McMC chain:

α(m′|m) = min

[
1,

p(m′)
p(m)

[ p(d|m′)
p(d|m)

]1/T q(m|m′)
q(m′|m)

|J|
]
. (12)

m is perturbed to m′ via a proposal PDF q(m′|m). The Jacobian
determinant term |J| is not to be confused with the model Jacobian
needed for gradient-based inversions (e.g. Constable et al. 1987),
but is a matrix that incorporates changes in model dimension when
moving from m to m′. There are various implementations of trans-D
McMC, and in all the examples cited so far, a ‘birth-death’ scheme
(Geyer & Møller 1994) has been used. As shown in Bodin & Sam-
bridge (2009), Dettmer et al. (2010) and Sen & Biswas (2017) for
most ‘birth-death’ trans-D McMC schemes, |J| is unity. We have
adopted the ‘birth-death’ algorithm in this work. T is a tempering
parameter used to anneal hard-to-sample likelihoods, with T = 1
used for unbiased sampling in a sequence of interacting Markov
chains (see Dettmer & Dosso 2012 for details). Detailed expres-
sions for the acceptance probabilities α are given in Appendix A.
Pseudo-code for trans-D McMC sampling with interacting chains
is provided in Algorithm 1.

3 C S E M I N V E R S I O N

The marine controlled source EM (CSEM) method is an active
source sounding technique. It has been in use for over three decades
for the detection of geology with high resistivity contrasts (Young &
Cox 1981; Chave & Cox 1982). Conductive media such as sea-water
or brine filled sediments have a characteristic EM scale length (skin

depth) δ =
√

2ρ

μω
that is dependent on both the medium resistivity ρ

and the frequency of propagation ω, where μ is the permeability of
the medium. Owing to the fact that δ is smaller in conductive (low
ρ) media, marine geophysical EM methods operate in the lower
frequency quasi-static regime with physics that is more diffusive
than wave like (Loseth et al. 2006). To first order, it is this diffusive

decay that can characterize the conductivity of a given medium. For
hydrocarbon bearing geology, it is the high resistivity of the hydro-
carbon accumulation with respect to its surroundings that produces
a detectable EM signature. This signature is different from what
would have been observed in the absence of hydrocarbons (e.g.
Constable 2006, 2010). However, reliable inferences from CSEM
can only be made by means of an inversion, and a Bayesian inversion
is ideal to quantify the uncertainty inherent in the inversion process
(e.g. Hou et al. 2006; Chen et al. 2007; Gunning et al. 2010; Bu-
land & Kolbjornsen 2012). The aforementioned references, while
Bayesian, used a fixed number of dimensions k dictated by the user
and not by the likelihood. Trans-D Bayesian methods have been
used to invert CSEM data with both 1-D and 2-D parametrizations
(e.g. Ray & Key 2012; Ray et al. 2014). Though the theory was
similar in both cases, the implementation of the trans-D method
required parametrization with layers/interfaces for a 1-D earth and
Voronoi cells for 2-D.

In the following sections, we demonstrate how our new (spatial)
dimension agnostic method, parametrized with GPs (trans-D-GP),
can be used to efficiently perform Bayesian trans-D inversion. Since
CSEM forward computation is computationally expensive and all
computations in this paper were carried out on a 4-core / 8-thread
processor @2.8 GHz, CSEM inversions were done in 1-D, and a
nonlinear regression inverse problem is carried out in 2-D.

3.1 Synthetic examples

3.1.1 Prior sampling

Before we turn to real CSEM data in the next sections, we demon-
strate the effectiveness of our method on synthetic CSEM data mod-
elled on our knowledge of the Scarborough gas field (see Driscoll
& Karner 1998; Myer et al. 2013 for details). First and foremost,
before using any sampling based Bayesian method with any data we
advise a thorough examination of the sampled prior in the absence
of informative data. By setting the likelihood function to a constant
in (7)—the equivalent of assigning all sampled models the same
misfit—we are only sampling the prior (11). The sampled prior
should reflect what we have specified in the theory. When imple-
menting a new algorithm, small errors in the theoretical derivation
or the actual computer code can lead to serious biases in the prior
specification, which will in turn affect the posterior sampling (see
Piana Agostinetti & Malinverno 2010 for a discussion). Prior sam-
pling is shown in Fig. 3. In (a) we plot the joint prior PDF of mk, xk .
As theoretically specified by our choice of prior, it is near-uniform.
This is clear also from (b) where depth has been marginalized out of
the joint pdf and we see the prior pdf on mk which are the training
values for resistivity. In (c) the resistivity has been marginalized
out and we see the prior PDF on xk , which in this 1-D case is the
prior PDF of placing training points in z. Finally in (d) we show
the marginal pdf on k, the number of training points sampled, also
close to uniform as was specified in the prior. This shows that the
sampling of the prior works according to the theory specified.

We would now like to examine the resulting high-dimensional
models μ∗(mk), as shown in Fig. 4, to see if the GP parametrization
samples appropriately the region of high-dimensional earth model
space we are interested in.

On the left-hand panel of Fig. 4 are shown marginal PDFs of
resistivity with depth, which tend to be a little jittery, and on the
right are shown the corresponding cumulative density functions
(CDFs) which of course are smoother. At every depth, in accordance
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1714 A. Ray and D. Myer

with the definition of a PDF the sharpest change in the CDF marks
the area of highest probability in the PDF. All sampled ‘training’
points mk are de-meaned before we apply (5), after which the mean
is added back in. This results in the marginalized prior μ∗ being
centred at the middle of the interval [−0.5, 2.3]. There are small
‘edge effects’ at both ends of the z co-ordinate we could address by
extending the sampling domain through ‘padding’ (see Turner 2011
for more sophisticated methods) but have elected not to do so as
they are relatively minor. In both panels, the 98 % Bayesian credible
interval (CI) is the zone at every depth in-between the dashed lines,
with 2 % of resistivities outside of it. The synthetic resistivity model
we are going to invert for (in black) is well within this interval. It
must be mentioned that PDFs at all depths are normalized to one to
show the location of maximum probability. We had chosen a λ of
50 m, implying that resistivities are highly correlated within 50 m
of each other. Equally important, is the fact that we have specified
a σ m value or ‘noise’ in the observed ‘training’ points at 0.2. This
corresponds to 7 % of the interval as wiggle room within which to
fit the training points. The lower σ m is, the more the GP tries to
fit the training points exactly, which causes μ∗ to oscillate more.
This causes the CI to get wider and allow extreme, δ-function-
like resistivities. Some experimentation of this sort is necessary
to set these hyperparameters for the algorithm. Since no forward
computations are required, this is not a time consuming exercise.

3.1.2 Posterior sampling

Using the prior probabilities specified in the above subsection, we
performed a set of synthetic experiments based on the geology of
the Scarborough gas field in the North West Australian shelf. The
target layer, as shown in the previous experiments for sampling the
prior, is at 1900–2000 m depth with a resistivity of 25 ohm-m (log10

of 1.4). However, a confounding layer corresponding to the Gearle
siltstone formation with a moderately high resistivity of 3.16 ohm-m
(log10 of 0.5) at 1700–1800 m depth is also included in the model.
Previous studies have shown that at typical CSEM noise levels,
it is not possible to invert both of these closely spaced resistive
bodies in the same earth model (Myer et al. 2012). However, the
bulk resistivity amounting to a sizable hydrocarbon saturation or its
absence near 2000 m depth can indeed be inverted as shown by Myer
et al. (2015) and Ray et al. (2014). In the synthetic study, frequencies
at 0.25, 0.5, 0.5, 1.75 and 3.25 Hz were used for the inversion, the
same as in the actual field studies. Gaussian noise proportional to
5 % of the amplitude was added at every receiver, independently
to the real and imaginary radial inline electric fields, with a source
normalized noisefloor of 10 −14V/(Am2). The transmitter was placed
at 975 m depth, with 32 seafloor receivers placed at 1000 m depth.
The receivers were spaced at intervals of 177 m between inline radial
offsets of 500 and 6000 m.

As we have mentioned in Section 2.3, implicit in the way we have
defined the prior probability (11) is a correlation length λ. It is a fact
of most inversion methods, whether deterministic, Bayesian or ML
based, that we must include constraints or reliable prior knowledge.
In a hierarchical Bayesian framework, we can place hyper-priors
on the priors themselves, and sample over a range of priors to
understand sensitivity to different prior specifications. We could do
the same here, except that it will require reconstructing the low
dimensional matrix Km and the large dimensional matrix K∗ in (5).
Though this is not a concern for a 1-D earth, matrix construction for
a large 2-D or 3-D model can be time consuming. Further, allowing
local length scales to be inferred from the data is the direction we

would like to proceed in as discussed later in Section 5. In this
section, we instead study the impact of choosing correlation lengths
of 100, 25 and then 50 m as can be seen in Fig. 5. As predicted in
all cases, the data were unable to resolve the Gearle layer, though
high resistivity corresponding to the reservoir was found by the
marginalized posterior resistivity distribution peaking near 2000 m
depth. The marginalized CDFs provide, in our opinion, the clearest
indications of a resistive anomaly at depth.

The convergence plots for the inversion with λ equal to 50 m are
shown in Fig. 6. The algorithm was run for 800 000 iterations, the
last 500 000 of which were used to infer the posterior and ensure that
samples are not trapped in low-probability regions. The number of
training points is shown in the first row indicating that the algorithm
never used any less than five training points k nor any more than 35,
with a mean of 15. The prior limits were set for k between 2 and 50.
The middle row shows the negative log-likelihood, a proxy for the
χ 2 misfit in (8). We did not consider the data noise to be known, and
found a maximum likelihood estimate of the noise per frequency,
as detailed by eq. (B10) in Appendix B. This is a common sig-
nal processing approach borrowed from the field of geoacoustics
(e.g. Mecklenbrauker & Gerstoft 2000; Dosso & Wilmut 2012). We
used parallel tempering (PT; Swendsen & Wang 1987; Geyer 1991;
Dettmer & Dosso 2012; Ray et al. 2013a; Sambridge 2013; Bottero
et al. 2016) with eight interacting Markov chains to accelerate con-
vergence. PT ensures that the likelihood is thoroughly explored via a
sequence of concurrently running McMC chains with gradually an-
nealed likelihoods. By this we simply mean that the temperatures T
are logarithmically spaced. In optimization parlance, this provides
a good means of escaping local misfit minima. However, instead
of exchanging models between adjacent chains as is traditionally
done (e.g. Earl & Deem 2005), we allowed any chain to exchange
information with any other chain, which allows for more efficient
sampling (Sambridge 2013). Further, the exchange of temperatures,
especially in a parallel computing environment is equivalent to the
exchange of models, but more efficient as it cuts down the parallel
communication overhead. We show the exchange of temperatures in
the third row of Fig. 6 from which we can infer healthy exchange of
information between different McMC chains. Rapid changes in the
number of training points with sample number are also indicative
of efficient sampling. Since the birth/death acceptance rates within
a single chain can be on average as low as 3%, a well known dif-
ficulty of using trans-D methods, we circumvent this issue with PT
exchanges-between-chains. Average acceptance rates for change of
spatial location x (here the z co-ordinate) were 53%, and for change
in property m, here conductivity, were 21%. Posterior inference was
carried out as usual with the McMC chain that is not annealed, with
T = 1. Eight McMC chains with logarithmically spaced tempera-
tures between 1 and 2.5 were run in parallel using PT for a total
runtime of 21 hr.

The data fit for 100 randomly chosen posterior models for the λ

= 50 m inversion is shown in Fig. 7. Note how the assumption of
Gaussian noise has been qualitatively met, given that there are no
large outliers. This indicates that our maximum likelihood method
for estimating data noise within our McMC scheme is working
as expected. The convergence statistics for the longer and shorter
λ were similar, with all target chains able to sample traditionally
calculated root mean square (RMS) data errors ≈1. However one
crucially different aspect in the three cases is that the shorter λ =
25 m inversion sampled on average a higher number of points k,
while the longer λ = 100 m inversion sampled on average a lower
number of points k than λ = 50 m. The effect of λ can also be seen
in the widths of the respective credible intervals in Fig. 5. With the
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Figure 7. Top: Data fit for λ = 50 m and 100 randomly selected posterior models. The error bars correspond to 2σ Gaussian noise at 5 per cent relative to
|Er|. Bottom: the data noise was an unknown in the inversion and estimated through a maximum likelihood procedure at every McMC step. The histogram of
standardized posterior inversion residuals at every frequency (in red) are shown together with an analytic Gaussian (dashed black).

highest λ (top row) the anomalous resistivity distribution at reservoir
level is quite smooth but it appears that posterior distributions of
resistivity are narrow. With the lowest λ (middle row) we get more
‘resolution’ of the reservoir anomaly and can separately infer the
reservoir top and bottom. However, the posterior distribution of
resistivity is quite broad. Based on this study, we chose to go with λ

= 50 m (bottom row of Fig. 5) for the Scarborough real data CSEM
inversion.

At this point, we would like to point out that had we used a trans-D
parametrization with layers, we would effectively have chosen λ = 0
at interfaces and λ = ∞ in-between interfaces. Using the GP-based
prior, though we need to fix λ, we at least give ourselves a choice
about the correlation length of geology in the earth—which is cer-
tainly not zero or infinity. The same argument holds for Voronoi
cells and abrupt changes in 2-D. We have within this restriction
of a chosen correlation length, allowed the data and Bayesian par-
simony to determine the location and number of training points
that define an earth model m. If we compare with ‘classic’ layered
trans-D CSEM inversion results as shown in fig. 10 of Ray et al.
(2014), the posterior using trans-D-GP is always smoother, as we
should expect—given that the choice of prior parametrization de-
termines the behaviour of inferred posterior models (see Hawkins
& Sambridge 2015; Ray et al. 2017 for a discussion).

3.2 Scarborough field CSEM inversion

We applied trans-D-GP to data from the Scarborough gas field,
which lies inside the Exmouth Plateau in the North West Australian

Shelf. The plateau is covered by a number of nearly horizontal lay-
ers with resistivity varying between 1 and 10 ohm-m (Myer et al.
2012). Five exploration wells have been drilled in the Scarborough
gas field and the well data together with 3-D seismic data were used
to delineate the approximate extent of the reservoir. The reservoir
itself is between 20 and 30 m thick at a depth of ∼2000 m below sea
level. The bathymetry, also quite flat is at a depth of ∼950 m. Resis-
tivity at reservoir level is moderate at 25 ohm-m and the reservoir is
overlain by several thin 5–10 ohm-m layers. We inverted data from
two sites located in the ‘off reservoir’ and ‘on reservoir’ parts of
a CSEM tow-line. The posterior resistivity with depth for the both
sites is shown in Fig. 8. In the off-reservoir part there is evidence
of weak 8–10 ohm-m anomalies with accompanying changes in the
CDF above 2000 m depth. Contrast this with the on reservoir pos-
teriors indicating high probability of moderately resistive material
of 10–25 ohm-m at similar depths. Our results are in line with the
previous findings of Ray et al. (2014), who showed that the poste-
rior PDFs of resistivity (not just the mode) near 2000 m depth move
en masse to more resistive values as we tow the transmitter from
off-reservoir to on-reservoir sites. Interestingly, the ‘jumping’ back
and forth between conducting to resistive or multimodal nature of
posterior resistivities between 1500 and 2500 m depth is also visible
in previous studies of the area (see Ray et al. 2014). We conjecture
that this is a sign of macroscale conductivity anisotropy due to
rapidly alternating (in depth) layers of resistive shale (or siltstone)
and briny conducting fluid fill.
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1716 A. Ray and D. Myer

Figure 8. Top: Off reservoir posterior resistivity distributions. Bottom: On reservoir posterior resistivity distributions. Note how the resistivity PDFs near and
above 2000 m depth shift in bulk to more resistive for the on reservoir case. This is indicative of the resistive hydrocarbon bearing reservoir as also found by
Ray et al. (2014).

The algorithm was run for 2 000 000 samples with the last
1 000 000 samples used for posterior inference. Data fits and con-
vergence statistics for both sites can be seen in Figs 9 and 10.
Convergence for the off reservoir case as seen in Fig. 9 is perhaps
questionable, given that the sampling of the number of training
points seems not to be stationary. However, the sampled square
misfit or negative log likelihood is indeed stationary, and the values
of posterior resistivity with depth do not change appreciably if infer-
ence is made using the last 1 000 000 samples or the last 500 000. As
noted by Bodin & Sambridge (2009) conventional McMC diagnos-
tics are not useful for trans-D given that the number of parameters
vary from step to McMC step. We have followed their approach
of instead focusing on near-stationarity in the values of geophysi-
cal property (resistivity in our case) at spatial locations across the
model. Given the similarity with previous results using an entirely
different parametrization (Ray et al. 2014), we deem the target chain
converged for all practical purposes. While we agree that accounting
for correlated data error is necessary for drawing robust inferences,

we have at least attempted to ensure that our residuals are Gaussian.
We note that correlated data error is a significant source of confusion
for posterior inference. It is also the likely cause for the greater num-
ber of samples to reach convergence than in the synthetic studies.
Though we have not attempted to deal with correlated error here,
see Ray et al. (2013b) for hierarchical approaches to data covariance
matrix estimation. Another approach to reducing inversion artefacts
from correlated data error is to use a 2-D parametrization and treat
navigation data with a common mid-point approach (e.g. Ray et al.
2014). Of course, it would be best to forward model this data with a
2-D earth model using a 3-D source (e.g. Key & Ovall 2011). This
was not possible given the computational resources available to us,
though it is well within the means of academic research consortia
and industry. We have instead tried to deal with inconsistent and
correlated data error estimates by using maximum likelihood data
estimates and by inverting both the in-tow and out-tow data – the
errors in which, at similar offsets, are not correlated. Given that our
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Figure 9. Off reservoir data fit, inversion residuals and convergence statistics. The data noise was considered an unknown in this inversion and maximum
likelihood estimates were used in the likelihood function. 2σ error bars are from the error analysis made by Myer et al. (2012).

results are in line with previous work, this demonstrates that our
trans-D-GP methodology works in a real-world setting.

4 E X T E N S I O N T O 2 - D : A N O N L I N E A R
R E G R E S S I O N A P P L I C AT I O N

As an example of extending to higher spatial dimensions, we solve
a nonlinear regression problem with ‘non-function data.’ By this we
mean the data to be fit are not the outcome of a single valued function
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1718 A. Ray and D. Myer

Figure 10. On reservoir data fit, inversion residuals and convergence statistics. The data noise was considered an unknown in this inversion and maximum
likelihood estimates were used in the likelihood function. 2σ error bars are from the error analysis made by Myer et al. (2012).

as a function of a distance co-ordinate (see Criminisi et al. 2011
for further examples). We could also think of this as a 2-D spatial
regression problem. Geoscientific applications of this type using
trans-D methods have been investigated by Gallagher et al. (2011)
and Bodin et al. (2012a). Depending on the specifics of the problem,

they used interfaces for one spatial dimension and Voronoi cells for
two. However with a GP, the exact same theory in Section 2.1 holds
no matter the number of spatial dimensions. With a different misfit
function, using the same code as we did for the CSEM problem we
now solve a problem involving a parameter space with two spatial

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/217/3/1706/5366736 by guest on 01 April 2019



Trans-D inversion with Gaussian processes 1719

dimensions (Fig. 11). On the left is a low-passed 256 × 256 image
of the standard test image ‘splash’ available from the SIPI database
at the University of Southern California (http://sipi.usc.edu/databas
e/). On the right, we sample at random 851 of the original 65 536
pixels, deliberately sampling the upper part sparsely to see how the
algorithm adapts to irregular non-stationary data coverage. Random
Gaussian noise with standard deviation equal to 5 % of the max
value is also added. The objective is to find 2-D representations (and
also their uncertainty) that approximate the true image at locations
not sampled. Naturally, one could use kriging methods to solve this
problem, but we are interested in one further property that a standard
kriging methodology cannot ensure. We would like parsimonious
representations of this image, as we would require for geophysical
applications over a spatially vast part of the earth, forward modelling
the physics for which we would require many pixels. Further, we
demand that the data coverage and noise levels should determine the
complexity of the model representation(s) in concert with our prior
knowledge. To these ends, we define a likelihood function such that
the residual misfit vector is simply the difference in the values on
the right of Fig. 11 from the values of sampled GP models μ∗(m)
at those same spatial locations. Similar to the CSEM case, the data
noise variance was determined using a maximum likelihood method
(see eq. B5 of Sambridge 2013).

The progress of trans-D sampling with Cλ =
(

1002 0
0 1002

)
, that

is, λ set to 100 in both spatial dimensions is shown in Fig. 12. Note
how the misfit (negative log likelihood) decreases as the model
complexity k increases, achieving near-stationarity 20 000 samples
onwards. 38 < k < 66 after achieving stationarity, though the maxi-
mum permissible prior value for k is 100. Sample 50 000 is shown in
the left of Fig. 13 with the accompanying 55 training points needed
to define the model. The mean of samples from 50 000 onwards is
shown on the right. Note that this is a nonlinear process and mul-
timodal distributions of parameter values cannot be represented by
only a mean and a variance. Another advantage of our trans-D-GP
method, unlike a traditional GP with a unimodal Gaussian at every
spatial location, is that the full posterior distribution of inverted pa-
rameter values can be shown at any spatial location (e.g. Ray et al.
2017; Galetti & Curtis 2018). This has already been evidenced by
the CSEM examples where posterior distributions of resistivity at
certain depths were seen to be multimodal. In Fig. 14 we show
how our method adapts to both model complexity as well as the
manner in which the data have been sampled, a hall-mark of trans-
D methods that we have preserved in our algorithm. Where there is
less data, there should be high posterior uncertainty, as we can see
in the figure to the left. On the right, we can see that where the data
are informative, there is a dense nucleation of GP points.

5 I N T RO D U C I N G L O C A L L E N G T H
S C A L E S

As mentioned in Section 3.1.2, we would like to put forward the
idea of allowing length scales λ which can vary spatially. This
‘stationarity’ of the length scale is not a requirement, as has been
proved by various workers such as Gibbs (1997), Higdon (1998)
and Paciorek (2003). Following the approach of Paciorek (2003)
we redefine the GP kernel K (y, y′) (2) (see eqns 4.33 and 4.34 of
Rasmussen & Williams (2006)):

Kns(y, y′) = 2nd /2|
|1/4|
′|1/4|
 + 
′|−1/2

× exp
(

− 1

2
[y − y′]t Cλ

−1
ns [y − y′]

)
, (13)

where

Cλns = 
 + 
′

2
, (14)

and 
, 
′ are the local length scale covariances at spatial locations
y and y′.

Using this approach we were able to find a GP mean with min-
imal trial-and-error, that can approximate a 1-D function with two
abrupt changes (Fig. 15). Similar to Plagemann et al. (2008), in the
bottom row we show the smoothly varying length scale over the
abruptly varying function. This variation in λ enabled us to model
the true function with less oscillation than the GP mean with a fixed
λ. Though we have not used this technique in our algorithm, it can
in principle be used to make λ a spatially varying model parameter.
It would require us to use another GP to model the non-stationary
length scales λ everywhere (e.g. Plagemann et al. 2008), given that
λ is defined sparsely at a few spatial locations. This will add twice
as much computational overhead for modelling a GP, but for large-
scale models where this time is negligible compared to the forward
modelling time, coupled with the fact that Km and the length scales
for the continuous property λ need only be defined by fewer than
100 points, this is not such a hindrance as it may at first seem.
Given that the trans-D algorithm is able to place training points
with appropriate earth model property values (e.g. conductivity) at
appropriate spatial locations, this idea should extend hierarchically
to appropriately inferring the unknown length scales over the un-
known earth property values. The idea belongs to the ‘learning to
learn’ paradigm in ML (e.g. Andrychowicz et al. 2016; Chen et al.
2017). To demystify this line of thought we might say that in order
to learn the earth’s properties, we must also learn its length scales.

6 C O N C LU S I O N S

We have developed a new methodology that incorporates the well-
known Gaussian Process ML technique into a parsimonious trans-D
framework, demonstrating its use in 1-D, 2-D and field applications.
We have shown that ML techniques can be easily incorporated into
a Bayesian geophysical inversion framework through the specifica-
tion of prior information (e.g. Laloy et al. 2017). While our method
does adapt earth model complexity according to the data noise and
receiver coverage, it is not truly multilength scale (e.g. Hawkins &
Sambridge 2015, whose tree method is multiscale). However in Sec-
tion 5, we have shown with examples that it is theoretically possible
and perhaps even desirable to incorporate multiple length scales
into the technique. The key advantage in using our method is the
simplicity of prior specification and ease of representing large-scale
models in 1-D, 2-D or even 3-D. Further, the inclusion of ‘fixed’
prior values in the earth model may be achieved by keeping part of
K∗, Km and m fixed, discounting these elements from the trans-D
count k. This is possible as GPs are based on conditional realizations
of Gaussians, while this is not easily done in dimension-reduced
latent-space methods (see Laloy et al. 2018 for workarounds). We
contend that for low-frequency geophysical inversion, trans-D-GP
is simple enough to implement from scratch without the use of an
ML library and provides the scalability for inverting large 2-D or
3-D earth models with a small number of effective parameters. Last
but not least, it provides uncertainty estimates on inverted earth
properties.
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Figure 11. Left-hand panel: the ‘splash’ test image downsampled to 256×256 and lowpassed with a 7×7 Gaussian kernel. Right-hand panel: unequally and
irregularly sampled data from the left image with added Gaussian noise.

Figure 12. Top: number of training points k required in the reconstruction of the ‘splash’ test image. Bottom: misfit reduction by the trans-D McMC chain.
Note how k never rises above 66 though the permissible maximum is 100.
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Figure 13. Left-hand panel: μ∗(m) at sample 50 000 and the 55 training points needed to define it. Right-hand panel: the mean of μ∗(m) samples 50 000
onwards.

Figure 14. Left-hand panel: log10 of the standard deviation of posterior samples. Locations of the noisy data are overlain in red. Right-hand panel: log10 of the
hit count of posterior training samples in the space domain. On the left we can see high standard deviation (darker shades) when the data coverage is poor, as
we should reasonably expect. On the right, we see that sampled points for the GP parametrization are densely nucleated near resolvable features in the model,
and loosely clustered when there is poor data coverage or features are not resolvable. This indicates that the algorithm adapts to complexity in the model as
well as the density of the observations.
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A P P E N D I X A : M C M C M OV E S A N D
T H E I R A C C E P TA N C E P RO B A B I L I T Y

We have followed the ‘birth-death’ McMC method (pseudocode
provided in Algorithm 1), where in each step, the length k of the
model vector m either increases by 1 (birth of a GP training point),
decreases by 1 (death of a GP training point), or remains the same
(values of the GP training point or its spatial location are perturbed).
It was pointed out by Galetti & Curtis (2018) that Bayesian natural
parsimony is not preserved with improperly tuned birth and death
steps when using Gaussian proposals. We have obviated the need
for such tuning during birth and death steps by simply proposing
from the prior as recommended by Dosso et al. (2014) and noted in
the work of Zhang et al. (2018).

A1 Birth step

During a birth move, k′ = k + 1 and hence the prior ratio from (11)
is[

p(m′)
p(m)

]
birth

= 1

�ρ

k + 1∏nd
i=1 �xi

p(k + 1)

p(k)
, (A1)

where the last fraction is unity for a uniform prior on k. For a birth
move, we propose a GP training location in the region

∏nd
i=1 �xi

uniformly at random, and assign it a value uniformly in �ρ, hence
the proposal q(m′|m) can be written as[

q(m′|m)

]
birth

= 1∏nd
i=1 �xi

1

�ρ
, (A2)

whereas the reverse proposal in birth involves deletion of a random
point out of k + 1 points and can be written as[

q(m|m′)

]
birth

= 1

k + 1
. (A3)

Thus the birth proposal ratio is[
q(m|m′)
q(m′|m)

]
birth

= �ρ
∏nd

i=1 �xi

k + 1
. (A4)

Thus, from (11), (A1) and (A4)

αbirth(m′|m) = min

[
1,

(L(m′)
L(m)

)1/T p(k + 1)

p(k)

]
, (A5)

where the last fraction is unity for a uniform prior on k.

A2 Death step

In the death move, k′ = k − 1 and hence the prior ratio from (11)
is[

p(m′)
p(m)

]
death

= �ρ
∏nd

i=1 �xi

k

p(k − 1)

p(k)
, (A6)
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where the last fraction is unity for a uniform prior on k. For a death
move, we propose to remove one of k existing training locations.[

q(m′|m)

]
death

= 1

k
, (A7)

whereas the reverse proposal in death (i.e. the exact opposite of
birth) involves addition of a random point uniformly in the region∏nd

i=1 �xi and assigning it a value uniformly in �ρ, or[
q(m|m′)

]
death

= 1∏nd
i=1 �xi

1

�ρ
. (A8)

Thus the death proposal ratio is[
q(m|m′)
q(m′|m)

]
death

= k

�ρ
∏nd

i=1 �xi
. (A9)

Thus, from (11), (A6) and (A9)

αdeath(m′|m) = min

[
1,

(L(m′)
L(m)

)1/T p(k − 1)

p(k)

]
, (A10)

where the last fraction is unity for a uniform prior on k.

A3 Fixed k step

When k remains the same, the prior model probabilities do not
change. One of the existing k training points is chosen at random
and the perturbations for either a new position or a new property
value (conductivity) are chosen from symmetric Gaussian proposals
with reflection to keep parameters within the prior bounds (see Neal
2011; Yang & Rodriguez 2013; Pasquale & Linde 2017 for details
on reflection). The acceptance probability (12) is then simply the
ratio of model likelihoods:

αfixed(m′|m) = min

[
1,

(L(m′)
L(m)

)1/T
]
. (A11)

Please note that if one uses a uniform prior over k as we have done
in this work, then in all cases, whether birth, death or fixed k,

αunif k(m′|m) = min

[
1,

(L(m′)
L(m)

)1/T
]
. (A12)

A4 Parallel tempering step

To facilitate the escape of local misfit minima, or equivalently,
the navigation of peaky likelihoods, we use parallel tempering to
exchange information between McMC chains running in parallel.
One can either exchange models or temperatures at the end of
each McMC step using the following Metropolis–Hastings criterion
(Swendsen & Wang 1987; Geyer 1991; Earl & Deem 2005; Dettmer
et al. 2012; Ray et al. 2013a; Sambridge 2013):

αswap(i, j) = min

[
1,

(
L(m j )

L(mi )

)1/Ti (
L(mi )

L(m j )

)1/Tj ]
. (A13)

For a description of why swapping is effective using (A13) see
section 3.2 of Blatter et al. (2018).

Our entire algorithm is summarized by the pseudocode in Algo-
rithm 1:

initialize chains with models x j for temperatures Tj where
j = 1, 2, ..., nT emps
for i ← 1 to nSteps do

for j ← 1 to nT emps do
Select t ype from {bir th, death, f i xed} with
probability [ 1

3 , 1
3 , 1

3 ]
m ← x j [i − 1]
m ′ ∼ q(m ′|m)t ype

u ∼U (0, 1)
if u < α j (m ′|m)t ype and p(m ′) > 0 then

x j [i] ← m ′

else
x j [i] ← m

end
end
for j ← 1 to nT emps do

u ∼U (0, 1)
p ∼U (1, nT emps), p ∈ I
q ∼U (1, nT emps), q ∈ I, p 
= q
if u < αswap(p, q) then

swap Tp and Tq

else
no swap

end
end

end
Algorithm 1: Pseudocode for McMC with trans-D-GP + parallel
tempering. Forward computation to evaluate αswap(p, q) is not
required as likelihoods for models in chains p and q have already
been computed in the preceding i loop. The traditional requirement
of allowing only adjacent chains to swap information has been
relaxed, as detailed in Sambridge (2013). Finally, we only swap
temperatures T and not the models x , as this makes for efficient
and minimal exchange of data in a parallel computing environment.
Inference is carried out from the chain (or chains) with T = 1 after
an initial ‘burn-in’ number of samples.

A P P E N D I X B : M A X I M U M L I K E L I H O O D
DATA E R RO R

The model likelihood given in (8) is valid when the data (and residu-
als) are real. For complex data and a circularly symmetric Gaussian
variable with equal variance in the real and imaginary parts, we
write for nf frequencies with nr receivers at frequency l, the model
likelihood as

L(m) =
n f∏
l=1

1

π nr |Cdl |
exp

(
− [fl(m) − dl]

†Cd
−1
l [fl(m) − dl]

)
,

(B1)

where the term in the exponential is 1
2 the χ 2 misfit as the complex

data variance at any receiver in covariance Cdl is twice that of either
the real or imaginary parts. We assume uncorrelated data error at
all offsets and between frequencies, with noise standard deviation
proportional to amplitude as follows. The covariance Cdl at the lth
frequency is given by the diagonal matrix

Cdl =

⎡
⎢⎣

(σl |dl1 |)2 0
. . .

0 (σl |dlnr
|)2

⎤
⎥⎦, (B2)

= σ 2
l Cl , (B3)
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where σ l is the constant of proportionality at all receivers to the
signal amplitude at the lth frequency. We can thus write (B1) as

L(m) =
n f∏
l=1

1

(πσ 2
l )nr |Cl |

× exp

(
− 1

σ 2
l

[fl(m) − dl]
†C−1

l [fl(m) − dl]

)
. (B4)

To find the maximum of the likelihood (B4), we minimize the neg-
ative of the log of the likelihood (i.e. the misfit objective function).
First we take log as follows:

− logL(m) =
n f∑
l=1

log(π nr |Cl |) + 2nr log σl

+
(

1

σ 2
l

[fl(m) − dl]
†C−1

l [fl(m) − dl]

)
, (B5)

− logL(m) =
n f∑
l=1

log(π nr |Cl |) + 2nr log σl + 1

σ 2
l

rl
†C−1

l rl. (B6)

Next we derive with respect to σ l and set equal to zero:

2nr

σl
− 2

σ 3
l

rl
†C−1

l rl = 0, (B7)

⇒ σ 2
l = 1

nr
rl

†C−1
l rl. (B8)

At this point, we ask that readers note the similarity of (B8) with
equation B.5 of Sambridge (2013) who follows a similar approach
in the time domain, while we are operating in frequency. Substitut-
ing (B8) in (B6) we get

− logL(m) =
n f∑
l=1

nr log
[ 1

nr
rl

†C−1
l rl

]
+ constants not depending on m. (B9)

− logL(m) =
n f∑
l=1

nr log
[
rl

†C−1
l rl

]
+ constants not depending on m. (B10)

While sampling the posterior models in the McMC chain, we use
the negative log likelihood given by (B10), instead of computing the
misfit with unreliable, fixed, data error. Note that using this method-
ology, the data errors at each frequency are implicitly sampled as a
function of the current McMC sample m.
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