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S U M M A R Y
We present an algorithm to recover the Bayesian posterior model probability density function
of subsurface elastic parameters, as required by the full pressure field recorded at an ocean
bottom cable due to an impulsive seismic source. Both the data noise and source wavelet are
estimated by our algorithm, resulting in robust estimates of subsurface velocity and density. In
contrast to purely gradient based approaches, our method avoids model regularization entirely
and produces an ensemble of models that can be visualized and queried to provide meaningful
information about the sensitivity of the data to the subsurface, and the level of resolution of
model parameters. Our algorithm is trans-dimensional and performs model selection, sampling
over a wide range of model parametrizations. We follow a frequency domain approach and
derive the corresponding likelihood in the frequency domain. We present first a synthetic
example of a reservoir at 2 km depth with minimal acoustic impedance contrast, which is
difficult to study with conventional seismic amplitude versus offset changes. Finally, we apply
our methodology to survey data collected over the Alba field in the North Sea, an area which
is known to show very little lateral heterogeneity but nevertheless presents challenges for
conventional post migration seismic amplitude versus offset analysis.
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1 I N T RO D U C T I O N

The seismic full waveform inversion (FWI) method (e.g. see Virieux
& Operto 2009, for an overview) is a geophysical characterization
tool which promises to become a mainstay of the exploration and
production industry. The objective is simple—instead of perform-
ing the traditional process of migration on raw shot data to provide
an image of the subsurface reflectivity (Wapenaar 1996), find a
model(s) of the subsurface which when input to a suitable wave
propagation engine, provides a ‘reasonable fit’ to the observed raw
seismic gathers. The propagated seismic field should match the
raw gathers both in amplitude and phase, inclusive of reflections,
refractions, mode conversions and all multiples (Tarantola 1984).
However, in the 30 years since its inception, this idea has not com-
pletely come to fruition and FWI remains an active research prob-
lem (Aleardi & Mazzotti 2014; Alkhalifah 2014; Biondi & Almonin
2014; Vigh et al. 2014; Kamath et al. 2015, to name only a few ar-
ticles). There are various reasons for this, but first and foremost,
a numerical forward simulation of the full seismic field is exceed-
ingly costly, but with the advent of parallel computing techniques
(e.g. Komatitsch et al. 2010; Johnsen et al. 2015) this problem ap-
pears less daunting with every passing month. Second, the inverse

problem is highly nonlinear, which manifests itself through the pres-
ence of local misfit minima in the elastic parameter model space.
Here we shall attempt to overcome the non-uniqueness inherent in
FWI and despite the specific assumptions used in this paper of a
layered earth, provide a generally applicable method for doing so
with any kind of earth model geometry.

1.1 The importance of model regularization

The problem of dealing with model non-uniqueness and char-
acterizing uncertainty in the inverted models is one that has
no easy solution (Fichtner & Trampert 2011). The problem
is exacerbated by the presence of (not always) random noise,
which the reflection seismology community has been historically
loth to deal with. Given the traditional emphasis on imaging, it
follows that noise removal makes for a cleaner image. From a
numerical optimization point of view, this is understandable as
we would like to remove any impediment (i.e. noise) that would
prevent our favourite optimization algorithm from producing
a model which predicts a seismic field that is as close to the
observations as possible. However, for geophysical inversion, we

C© The Authors 2016. Published by Oxford University Press on behalf of The Royal Astronomical Society. 915

 by guest on D
ecem

ber 23, 2016
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

mailto:a.ray@chevron.com
http://gji.oxfordjournals.org/


916 A. Ray et al.

are not always justified in getting as good of a data fit as we
possibly can. This has been remarkably demonstrated by Parker
(1980), who proved that the model with lowest misfit for the non-
linear 1-D magnetotelluric (MT) inverse problem with discretely
sampled and noisy data (a situation true for all geophysical acquisi-
tion including FWI) is a series of delta functions in the earth—which
is not geologically a very reasonable model. This is where regular-
ization (or the inclusion of prior information as we will see later)
plays an important role, such that the objective function being
optimized, in addition to data misfit attempts to keep deviations
from a preferred model low—the generally preferred approach
with deterministic FWI. However, this method does not entirely
preclude over-fitting the data and producing an overly complicated
subsurface model, all features of which should not be believed.

1.2 Occam’s Razor and the preference for simplicity

At this juncture, one may also resort to an examination of the statis-
tics of the data noise. If we assume, for the moment, that the noise is
random and Gaussian, then we should only be fitting within a given
χ 2 value or noise tolerance. This is one part of the method espoused
by Constable et al. (1987) and the Occam’s inversion philosophy.
Now that we have introduced data error statistics, we can then make
a leap of intuition and ask, what of the model uncertainty statistics?
For a linear inverse problem with Gaussian data noise, the inverted
model uncertainties are provably Gaussian (Menke 1989). In this
case the model estimate corresponding to the L2 norm least squares
data misfit, is equal to the mean of the post-inversion Gaussian
model distribution. This however brings us to the non-trivial ques-
tion of ‘model selection’, that is, how many model parameters do
we use to solve the inverse problem? Overparametrizing the model
may lead to overfitting the data and underparametrizing may not fit
the observations accurately enough. Further, for a nonlinear prob-
lem, even with Gaussian data noise, the model uncertainties are no
longer Gaussian—in fact, from a statistical point of view, this is
what leads to multimodality in the model space (local minima from
the optimization point of view). Traditional gradient based inversion
methods depend highly on the start model and are guided by both
the preferred model and misfit gradient to approach ‘optimal’ so-
lutions in the model space, of which there could be many—leading
to the infamous ‘cycle skips’ which plague FWI. How then does
one solve a nonlinear inverse problem or hope to quantify model
uncertainty for such a problem? For FWI, one may use multiscale
approaches and well thought out frequency selection schemes (Sir-
gue & Pratt 2004; Fichtner et al. 2009)—but as pointed out in
Fichtner & Trampert (2011), the evidence of convergence to an op-
timal solution using these methods is empirical, though undoubtedly
useful if starting from a good initial model. An alternative approach
could be to make further use of the Occam’s inversion philosophy,
where we overparametrize the problem beyond what one can hope
to reasonably resolve, and then carry out a line search to find the
smoothest (i.e. simplest) model commensurate with both the data
error statistics and a prior model. We can then examine features of
interest (i.e. anomalies) in the smoothest allowable solution with
some confidence. A necessary caveat is that the Occam result is
an extremal model (smoothest) - and care should be taken in its
interpretation. It will not rid us of non-uniqueness in the inverted
model space—paraphrasing Sven Treitel there is no such thing as
a ‘slightly nonuniqe’ inverse problem (Constable 2013). Further, a
single inverted model that is maximally smooth, may hide from us
the full resolving capability of FWI given that the full sesimic field

carries in it great amounts of information on subsurface structure
and elastic properties. This motivates us then, towards examining a
probabilistic approach for FWI.

1.3 Bayes’ theorem and its relationship to the
Occam factor

Both the model selection problem and uncertainty within inverted
models can be tackled within a Bayesian framework, where in-
formation is expressed via probability density functions or PDFs.
Since Bayesian probability is a measure of information (Tarantola
& Valette 1982; Mosegaard & Tarantola 1995; Scales & Sneider
1997) and it is the aim of FWI to provide information about the
earth’s subsurface elastic parameters, it is natural to pose FWI in a
Bayesian framework. Mathematically speaking, Bayesian informa-
tion is contained in PDFs represented by p(·). Using Bayes’ theorem,
we write

p(m|d) = p(d|m) · p(m)

p(d)
. (1)

For Bayesian geophysical inversion, the observed data vector d is a
constant. All PDFs with a model dependence are functions of the
random variable m. The term p(d|m) can then be interpreted as
the model likelihood, the functional form of which depends on the
statistics of the noise distribution, and the value of which depends
on the model m being sampled and its fit to observed data. For
Gaussian noise, the model likelihood is given as

p(d|m) ∝ exp

(
− [d − f(m)]T Cd

−1[d − f(m)]

2

)
. (2)

Here f (m) corresponds to the modelled data and Cd is the co-
variance matrix of the residual data errors including theory er-
ror. [d − f (m)]T Cd

−1[d − f (m)] is the χ 2 misfit for the evalu-
ated model m. The prior model PDF p(m) represents our state of
knowledge independent of the survey data. The evidence term p(d)
corresponds to a constant PDF normalizing factor equal to the in-
tegral over all models of the numerator on the right-hand side of
(1). The aim of Bayesian inversion is to obtain the PDF p(m|d),
or the posterior model PDF, which conditions our prior notions of
the subsurface to the observed seismic data. Loosely speaking, the
posterior model PDF contains the model ensemble that has been
sculpted out of our set of prior models, after considering the misfit
due to each model.

In order to understand the second level of inference (MacKay
2003), that is, finding uncertainty on the number of parameters be-
ing sampled, let us rewrite eq. (1) and derive the Bayesian Occam
Factor. First, we split the model m into two parts, one part con-
taining a random variable k representing the k parameters (layers in
1-D, cells for a geobody parametrization, etc.) into which we divide
the earth model, and the other part mk is a random vector that con-
tains the actual elastic parameters of interest such as the velocities,
densities and the positions of these cells. We can then write the joint
probability of observed data and models and use the chain rule of
probabilities as follows

p(m, d) = p(mk, k, d), (3)

p(mk|k, d)p(k|d)p(d) = p(d|mk, k)p(mk|k)p(k), (4)

p(k|d) = p(d|mk, k)p(mk|k)p(k)

p(d)p(mk|k, d)
. (5)
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At this juncture, if we recognize that the evidence term p(d) is a
normalizing constant, assume that the prior p(k) on the number of
cells that our models are permitted to have is uniform and therefore
a constant in eq. (5), we can then write

p(k|d) ∝ p(d|mk, k) ·
[

p(mk|k)

p(mk|k, d)

]
. (6)

Eq. (6) is fundamental to understanding Bayesian preference for
simpler explanations. The left-hand side is the probability that our
models can consist of k parameters, given the observations of seis-
mic data d. The first term on the right-hand side is the likelihood of
the models mk with k elastic parameters. This likelihood depends
on the modelled data misfit as shown in eq. (2). The bracketed term
on the right of eq. (6) is the ratio of prior model probability of
a k-parameter model (independent of data observations, based on
experience), to the posterior k-parameter model probability (based
on fit to the observations, after drawing from within the set of prior
assumptions about values of elastic parameters). To make the ar-
gument even simpler, let us assume that we are only interested in
P-wave velocity in the earth, and divide the earth for a particular
model such that it has k layers. We assume a priori that the velocities
in different layers are independent and uniformly distributed in a
range �V. However, after collecting our seismic data and drawing
velocities uniformly from these k layers to fit the observations, we
find that for a layer i, we occupy only a fraction fi of the prior range
of velocities �V in every layer for our k-layered models. We find
this to be true after investigating (i.e. drawing) numerous models.
We can then rewrite eq. (6) as

p(k|d) ∝ p(d|mk, k) ·
[

f1. f2... fk

]
. (7)

Thus if we were to compare two models with different k, but similar
misfit and hence similar likelihood in eq. (7), the model with the
larger k will likely have lower posterior probability p(k|d) owing
to the multiplication of a larger number of fractional quantities
on the right-hand side. Thus the Occam Factor, from eq. (7) can
be thought of as the ratio of posterior accessible volume to prior
accessible volume, to quote MacKay (2003). It typically penalizes
more complex parametrizations without explicitly requiring model
regularization, as was first brought to the attention of the geophysics
community in a seminal paper by Malinverno (2002) on Bayesian
parsimony in geophysical inversion. Of course, the moment we
select a basis set (e.g. piecewise constant functions) to represent
our model, we are limiting ourselves to features representable by
that basis set (Valentine & Trampert 2015), as has been pointed
out by Hawkins & Sambridge (2015), but this does not invalidate
our methodology on considering models with a varying number of
parameters once a basis set is chosen.

At this point, we would like to point out that it may be possible
to use Bayesian parsimony to perform model selection in a wider
sense. For example, questions on the form of the data error statistics,
the choice of a model basis set, the inclusion of anisotropy, which
frequencies to use or even whether to use a 1-D, 2-D or 3-D model—
fall within the purview of model selection. However, within this
work, we restrict ourselves to model selection over a varying number
of elastic layers (or cells in higher dimensions).

1.4 Trans-dimensional Bayesian inversion

It is impossible to obtain the posterior model PDF p(m|d) in eq. (1)
by exhaustively sampling a large model space, hence we resort to us-

ing Markov chain Monte Carlo (McMC) sampling algorithms (e.g.
Gilks et al. 1996) to somewhat circumvent the ‘curse of dimension-
ality’ and generate model samples proportional to p(m|d). We know
that fixing a particular model parametrization for the inversion is
known to produce posterior PDFs, only for the given parametriza-
tion as shown in Ray (2014, see fig. 1.13 for a striking example) and
Dettmer et al. (2010). This is where the ‘trans-dimensional’ or ‘re-
versible jump’ (Geyer & Møller 1994; Green 1995) Markov chain
Monte Carlo (RJ-McMC) differs from traditional McMC methods,
in sampling from a posterior PDF where the number of unknowns
(i.e. the parametrization) is also treated as part of the inverse prob-
lem. In other words, the parametrization is also inferred from the ob-
served data. A review of applications which use trans-dimensional
McMC can be found in Sisson (2005). Sambridge et al. (2006)
further discuss this method in the context of evidence based model
selection (Bernardo & Smith 1994; Denison 2002). An introduc-
tion to geophysical trans-dimensional Bayesian inversion (referred
to as ‘trans-D’ from now on) can be found in Sambridge et al.
(2013). Malinverno & Leaney (2000, 2005) use trans-D for verti-
cal seismic profile (VSP) inversions. Bodin & Sambridge (2009)
use trans-D McMC for solving the seismic surface wave tomog-
raphy problem. Fontaine et al. (2015), Bodin et al. (2012, 2013)
and Piana Agostinetti & Malinverno (2010) apply trans-D to the
seismic receiver function inversion problem. Recent applications of
this method to solve geophysical electromagnetic problems can be
found in Gehrmann et al. (2015a), Ray et al. (2013a,b, 2014), Ray
& Key (2012), Minsley (2011) and Brodie & Sambridge (2012). In
particular, the geo-acoustics community has been extensively us-
ing trans-D Bayesian methods to invert for near surface sediment
velocities at high frequencies above 300 Hz. (Dettmer & Dosso
2012; Dettmer et al. 2010; Dosso et al. 2014). We have discussed
the trans-D method in some detail in Appendix B. Further, we have
wrapped our trans-D McMC sampling within a parallel tempering
framework (Dosso et al. 2012; Ray et al. 2013a; Sambridge 2013),
to facilitate sampling of a peaky misfit space (i.e. a multimodal
likelihood landscape), as elaborated upon in the Appendix B6.1

As we have noted earlier, in the exploration seismology context,
trans-D has been applied to VSP data inversion by Malinverno &
Leaney (2005). However, we are not aware of any applications of
the trans-D method to the exploration seismology nonlinear elas-
tic FWI problem, and consider our work to be the first. A further
highlight of our work is that we do not require the source seismic
wavelet to be known prior to inversion. The source signal can often
be problematic to derive, especially in shallow water. For a con-
ventional FWI method which requires a fixed source estimate, the
error will propagate into the inverted models and the results can be
unsatisfactory. After validating our methodology using a synthetic
example, we invert ocean bottom cable (OBC) hydrophone data
over the Alba field in the UK North Sea area (Sears et al. 2010).

2 T H E O RY

2.1 Frequency domain formulation and additive
noise model

To describe a seismic shot gather in the water column, we use the
inhomogeneous acoustic wave equation, subject to the boundary
conditions of a free surface above the source and receivers, with
an elastic seafloor underneath. The solution to this problem will
account for all parts of the observations, including the direct wave,
source and receiver ghosts, water layer reverberations and all mode
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conversions, reflections and refractions including multiples from
within the earth. We can write the time domain partial differential
equation subject to these boundary conditions as(
∇2 − 1

c2
0

∂2

∂t2

)
p(t, r) = s(t)δ(r), (8)

where p(t, r) is the pressure field recorded at the receivers, s(t) is
the source time function associated with an impulsive source at the
origin of co-ordinates, with the water velocity given as c0. Fourier
transforming every receiver trace from time to frequency using the
following definition,

P(ω, r) =
∫ ∞

−∞
p(t, r)eiωt dt, (9)

we arrive at the inhomogeneous Helmholtz equation for the signal
at angular frequency ω across all receivers:(
∇2 + ω

c0

2)
P(ω, r) = S(ω) · δ(r). (10)

If we know the Green’s G(ω, r) function for eq. (10) with a unit
source, then our solution at every receiver location r is simply

P(ω, r) = S(ω)G(ω, r), (11)

where the solution obtained in the time domain after inverse Fourier
transforming (11) is:

p(t, r) = 1

2π

∫ ∞

−∞
P(ω, r)e−iωt dω (12)

However, if we consider additive random noise n(t, r) in the time
domain, our observed data can be represented as

d(t, r) = p(t, r) + n(t, r), (13)

using the definition in eq. (9) and Fourier transforming eq. (13), we
obtain using eq.(11)

d(ω, r) = G(ω, r)S(ω) + N (ω, r). (14)

Note from eq. (14) that if n(t, r) is independent (i.e. samples
well separated in time are only weakly dependent), then by the
definition (9), N (ω, r) which is the sum of scaled independent ran-
dom variables must be Gaussian by central limiting (e.g. Mecklen-
brauker & Gerstoft 2000). This is elaborated upon in section IV
of Brillinger (1974), especially for the case of discrete data and a
large number of time samples. This justifies our use of a Gaussian
likelihood for solving FWI in the frequency domain.

2.2 Estimating the source wavelet

Let dl ∈ C
nr be the complex pressure field observed at nr receivers

at frequency ωl and Gl (m) ∈ C
nr be the Green’s function at those

receivers at the same frequency due to a model m. Then from
eq. (14) we can see that the complex source wavelet estimate at
frequency ωl, can be obtained either using a maximum likelihood
(ML) estimate (Mecklenbrauker & Gerstoft 2000; Dosso & Wilmut
2012; Dettmer et al. 2015; Gehrmann et al. 2015b), or as the solution
to a linear overdetermined least-squares problem (e.g. Virieux &
Operto 2009). The estimate of the source is given as

Ŝl (m) = G†
l (m)dl

G†
l (m)Gl (m)

, (15)

where † denotes the Hermitian transpose. Note that no matrix inverse
computation is required to arrive at this estimate.

2.3 Data noise estimation through maximum likelihood
methods

Within a Bayesian formulation, it is essential to know the noise
statistics well in order to be able to formulate a likelihood. However,
within the exploration seismology community, the focus has been
on noise removal as opposed to estimation. Often times, this mani-
fests in complicated processing of the raw shot gathers, after which
inversion of the resultant processed data becomes intractable as we
may not know enough about this processing flow to apply the same
steps to our forward modelled data. Of course, given the operational
constraints of obtaining seismic data, it may not be possible to obtain
repeated measurements of a shot so as to obtain variance estimates
on the recorded traces. One could argue that stacking adjacent traces
will reduce noise variance, but we need to know how large of a spa-
tial aperture to stack within so as to not introduce modelling error,
and that again requires significant manual intervention. An approach
which has been in use by the geo-acoustics community for many
years, has been to use ML methods to derive objective functions with
an estimate of the spectral noise as well as the source wavelet, and
then use these objective functions within likelihood functions for
inversion or Bayesian sampling (Mecklenbrauker & Gerstoft 2000;
Dosso & Wilmut 2012). Since we have already justified the use of
Gaussian likelihoods in the frequency domain, and dealt with esti-
mates of the source spectrum, let us now turn our attention to the last
remaining piece of the likelihood estimate, the frequency domain
covariance. We begin by noting that we can write a Fourier transform
as defined in eq. (9) as a matrix F for nf frequencies which operates
on a nt × 1 time series column vector to its right in the following
manner

F =

⎡
⎢⎢⎢⎣

eiω1t1 · · · eiω1tnt

...
. . .

...

eiωn f t1 · · · eiωn f tnt

⎤
⎥⎥⎥⎦, (16)

The Fourier transform of a random nt × 1 time series x is a linear
transformation and can be written as x̃, where

x̃ = Fx. (17)

Let x be zero mean, with time domain covariance matrix Cτ . If
the mean and covariance of a random vector y are given as y0

and Cy respectively, it can easily be shown that under a linear
transformation ỹ = By that the mean and covariance of ỹ are given
by By0 and BCyBt respectively (e.g. Timm 2002). Thus for the
frequency domain random vector x̃, the covariance matrix Cω can
be written as

Cω = FCτ
tF†, (18)

where † represents a Hermitian transpose. Under the assumption of
independent data error of variance σ 2 at every receiver, using the
orthonormality of F this simplifies to

Cω = σ 2FF†, (19)

⇒ Cω = σ 2

nt
I, (20)

where I is the identity matrix. Thus we see that white data noise
in the time domain leads to white data noise in the frequency do-
main. However, seismic data are often low passed and receivers have
responses which are not flat in the frequency domain. We can rep-
resent the operation of low passing as another linear transformation
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Figure 1. (a) Synthetic model based on Alba well data (magenta) and background geology from Sears (2007). The high-velocity, low-density reservoir is near
2 km depth. (b) Wavelet produced from far field signature during the actual OBC survey. This wavelet was used to compute the synthetic T-X gather in Fig. 2(a).

Figure 2. (a) Noisy time domain shot gather for the synthetic example. (b) The resulting F-X amplitude spectrum with every trace in (a) Fourier transformed.
Amplitude colour scale is shown in dB relative to the maximum signal amplitude near 20 Hz at the first offset of 250 m.

in the frequency domain. Using a diagonal matrix H with purely
real entries (h1, . . . , hn f ), we low pass x̃ to produce x̃l as follows

x̃l = Hx̃, (21)

with covariance C
′
ω given by

C
′
ω = HCω

tHt, (22)

C
′
ω = σ 2

nt
HH, (23)

C
′
ω = σ 2

nt
diag

(
h2

1, . . . , h2
n f

)
(24)

Thus for the frequency l we have an unknown variance
σ 2

l
nt

and
the following diagonal (i.e. uncorrelated) frequency domain covari-
ance,

C
′
ω = diag

(
σ 2

1

nt
, . . . ,

σ 2
l

nt
, . . . ,

σ 2
n f

nt

)
. (25)

For random variables with uncorrelated real and imaginary parts,
i.e. with circular symmetry in the Argand plane, we use a slightly
modified likelihood L(m) instead of eq. (2),

L(m) = p(d|m)

=
n f∏
l=1

(
π

σ 2
l

nt

)−nr

exp

(
− [dl − fl(m)]†[dl − fl(m)]

σ 2
l /nt

)
, (26)

where fl(m) is the pressure field due to model m at frequency ωl

predicted at nr receivers using the estimate Ŝl from eq. (15) in the
forward eq. (11), that is,

fl(m) = Ŝl (m) · Gl (m). (27)

To obtain the ML estimate of the noise, let us denote the residual at
frequency l as

rl (m) = dl − fl(m). (28)

As shown in the Appendix A, if we maximize eq. (26) with re-
spect to σ l and substitute this value back in eq. (26), we obtain
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Figure 3. Selection of noisy frequency-offset data for synthetic inversion: Top: zooming into Fig. 2(b). Middle: decimated version of the top row, with
frequencies sampled every 0.5 Hz. Bottom: synthetic model responses (solid lines) and noisy data (circles) are shown at each frequency. All amplitudes in dB
relative to the maximum amplitude near 20 Hz and 250 m offset.

the following ML expression for the misfit square or negative
log-likelihood,

− logL(m) = nr

n f∑
l=1

log(r†l (m)rl (m)) (29)

Thus, using eqs (27)–(29) we can obtain an ML expression or
‘processor’ as it is known in the geoacoustics community (Dosso
& Wilmut 2012), which implicitly samples both the data noise
and the source spectrum as a function of the model being sam-
pled. We would like to emphasize that these equations can also
be used in a gradient based deterministic inversion, since a neg-
ative log-likelihood is equivalent to the squared data misfit. A
similar derivation can also be found in the time domain in Sam-
bridge (2013) for sesimic receiver function inversion. Though we
could have used a hierarchical Bayesian scheme to sample the
noise and source spectrum along with the earth model, the ML
approach adopted here reduces the dimensionality of the search
space (Sambridge 2013; Dettmer et al. 2015). We would like read-
ers to note that we have not made any assumptions specific to
the forward modelling geometry here, that is, our outline so far
has been completely generic and applicable not only to layered
earth but also wave propagation through complicated geological
models.

3 A P P L I C AT I O N O F T H E A L G O R I T H M

We apply the algorithm first to a synthetic example that roughly
mimics the geology of the Alba field (Newton & Flanagan 1993),
including the low-density and high-velocity reservoir layer at 2 km
depth of nearly 100 m thickness. We then apply the method to real
marine OBC data obtained from the Alba field.

3.1 Forward modelling by wavenumber integration

We model the full 3-D pressure field in the water due to an elastic
subsurface, with all ghosts, internal multiples, water reverberations,
mode conversions, reflections and refractions included. However,
since we intend this paper as a proof of concept, we restrict our-
selves to modelling laterally homogenous media using wavenumber
integration methods (Ursin 1983; Schmidt & Tango 1986; Kennett
1986, 2009). To generate an elastic full field shot gather, plane wave
reflectivity is modelled in the frequency-wavenumber (F-k) domain,
Hankel transformed (over radial wavenumber) to the frequency-
offset (F-X) domain, and then inverse Fourier transformed (over
frequency) to the time-offset (T-X) domain. We must briefly men-
tion here, that this semi-analytical solution for layered media pro-
duces a 3-D response, the same an accurate 3-D finite difference
or finite element code will produce, were it to be tasked with mod-
elling the T-X response due to the same layer-cake geology. For our
inversion purposes, observed T-X data are Fourier transformed to
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Trans-dimensional inversion of Alba field OBC data 921

Figure 4. Pressure field amplitude with offset at the 18 inverted frequencies for the noisy synthetic experiment. The observations are shown in black. 500
responses due to models randomly selected from p(m|d) are shown in grey. Both calculated and observed fields are shown in dB relative to 1 unit of observed
pressure. The lack of a constant difference between observations and predictions shows that the ML source spectral estimation scheme is working well.

the F-X domain, and only selected frequencies are modelled in the
F-X domain using the algorithm described above. Given the low dip
geology and lateral homogeneity exhibited by the Alba field, we are
justified in making this assumption.

3.2 Synthetic data generation

For the model shown in Fig. 1(a), using the source wavelet shown
in Fig. 1(b) we generated a shot gather in the time-offset (T-X)
domain. 143 receivers were modelled with a receiver spacing of
25 m, with the first receiver at 250 m and the last at 3.8 km. The
receivers were placed just above the seafloor at 138 m depth. The
free surface was set to 6 m above the source. Uncorrelated Gaussian
noise, with a standard deviation equal to −65 dB (with respect to the
maximum amplitude of the first recorded offset) was added to the
data, with the resultant shot gather shown in Fig. 2(a). Interfering
events associated with the reservoir depths are found 1.6–1.7 s
onwards at the closest offsets, not easily visible with the added
noise. We then transformed this T-X gather to the frequency-offset

(F-X) domain using the definition (9), by Fourier transforming the
signal at each receiver. The noisy amplitude spectrum is shown
in Fig. 2(b). Note how most of the signal energy is concentrated
at frequencies within 50 Hz, given that the source wavelet did not
contain significant energy at frequencies above 50Hz. The attraction
of frequency domain modelling is that with just a few frequencies,
one can capture the essential features of the seismic wavefield—
such as the notches seen in the amplitude spectrum Fig. 2(b)—which
are representative of the earth model. This can lead to significant
computational savings compared to time domain modelling, where
theoretically, many closely spaced frequencies must be considered
to produce seismic traces at the required sampling rate, for the
required total modelling time interval.

For the synthetic model considered here, we selected for inversion
F-X data at 18 frequencies between 5 and 13.5 Hz separated by
0.5 Hz (Fig. 3). Since the generated shot gather was 8.19 s long,
we could have had a frequency spacing of 1/8.19 = 0.12 Hz. We
opted not to invert such closely spaced frequencies as the wavefield
features at these frequencies are not very different, and possibly will
not provide extra information about the earth model sought after.
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Figure 5. Inversion residuals with offset at 18 frequencies for the synthetic example. 500 real (red) and imaginary (blue) residuals due to models randomly
selected from p(m|d) are shown. The complex data residuals have been normalized by the implicitly sampled ML data error.

This can be seen by comparing the top and middle rows in Fig. 3.
Further discussion on the selection of frequencies is done at the end
of Section 3.3.

3.3 Synthetic inversion results

Using the trans-D method, we sampled the posterior model ensemble
p(m|d) given in eq. (1) with a uniform prior distribution (detailed
later in this section) as well as the likelihood specified in eq. (29).
Before going on to examine the results, we believe that an inversion
is only as good as the data fit it produces. Since our Markov chain
inversion consists of many models in the posterior model ensemble,
we randomly selected 500 models and examined their data fit (Fig. 4)
as well as the inversion data residuals (Fig. 5) at all 18 frequencies.
In each panel of Fig. 4, the black line corresponds to the noisy
pressure field observations with offset at a fixed frequency. The
band of grey lines in the background are the responses from 500
models within p(m|d). The amplitude scale for each panel is simply
20log10(field), both for the observations and predictions. The close
match implies that the scaling scheme (27) is working well. In Fig. 5,
an examination of the 500 corresponding real (red) and imaginary
(blue) data residuals (normalized by the implicitly sampled data
error given by eq. A5 in the Appendix A) at each frequency for
every offset shows that the residuals are not correlated with offset

and are zero mean Gaussian distributed (Fig. 6) as expected. These
diagnostics give us confidence in our inversion scheme, and we can
move on to an examination of the posterior models.

Since p(m|d) is mutidimensional, we cannot view it without
marginalizing over the model parameters of interest. Our model
parametrization consists of piecewise constant values of compres-
sional velocity Vp, Poisson’s ratio ν, density ρ, compressional and
shear attenuation Qp and Qs. Different models sampled can have
different numbers of layers. The above parameters in each layer
were uniformly sampled from within fixed prior ranges at every
depth. The sampled Poisson’s ratio was then used to compute shear
velocity Vs given the value of Vp. Prior values were uniformly as-
signed with depth so as to give the model physics a chance to sculpt
out the background elastic trends, instead of our imposing them
a priori. The marginalized p(m|d), with the accompanying prior
bounds can be seen in Fig. 7. For the first five panels from the left,
darker shading corresponds to higher probability density. In these
panels, the true model is given by the magenta line, and the two thin
blue lines at every depth represent the 90 per cent Bayesian credible
interval. The red dashed line represents the median value of the
elastic parameter at every depth. The last panel to the right shows
the probability that the data require an interface to be present in the
model, that is, require a change in elastic parameters with depth.

From these plots, we can see that the true model including the
reservoir top is fairly well recovered with minimal uncertainty, at
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Trans-dimensional inversion of Alba field OBC data 923

Figure 6. PDFs of normalized inversion residuals for the synthetic data obtained from 500 models. For each frequency, an analytic standard Gaussian PDF is
shown in black, and the real and imaginary residuals are shown in red and blue, respectively. The complex data residuals have been normalized by the implicitly
sampled ML data error. The assumption of Gaussian data error has been met as expected.

least in Vp and Vs, down to 2 km depth. ρ is less well resolved,
and as expected from previous studies, Qp and Qs are not well
resolved.

Beyond 2 km depth, the reservoir bottom is not well resolved.
However, the presence of reservoir can be inferred, given that we
see the PDFs of the elastic parameters change in concordance with
the true model. We see a spike in the PDFs of Vp and Vs and a
sharp decrease in the PDF of ρ. Note that besides the prior ranges
of elastic parameters, no accurate starting model is required for a
Bayesian McMC inversion.

The number of posterior interfaces required in p(m|d) to explain
the data are shown in Fig. 8(a). In truth there are 12 layers with 11
interfaces, and this plot shows the importance of using a trans-D
formulation in estimating the background and anomaly velocities
correctly without resorting to regularization or imposition of ar-
bitrary vertical correlation lengths from the seafloor down to the
basement. Fig. 8(b) shows 500 estimates of the amplitude spectrum
of the ML wavelet sampled using eq. (15) and the spectrum of the
wavelet actually used to compute the T-X response. We see that the
recovered wavelet spectrum is also an excellent match to the true
wavelet spectrum, further validating our methodology in using an
ML estimate.

We must mention here, that our choice of frequencies is open
to question—we tried the same frequency range, with 1 Hz spac-

ing. The results were unsatisfactory, with the reservoir velocity
spike barely discernible in p(m|d). We have experimented with
skip ahead in frequency schemes as described in Sirgue & Pratt
(2004), but met with limited success in their use. We did not invert
frequencies higher than 13.5 Hz, owing to the computationally de-
manding requirement of using a greater number of wavenumbers to
model the pressure field with increasing frequency. We recommend
carrying out forward modelling and sensitivity analysis to differ-
ent subsurface elastic parameters in order to select the frequencies
for inversion. The synthetic study just discussed was motivated by
our goal of inverting field data from the Alba OBC survey, to be
discussed next.

3.4 Results from the Alba field

The Alba field in the UK North Sea exhibits very low dip geology
and remarkably horizontal layering. With a water depth of 138 m,
it lies at an approximate depth of 2 km within the Alba formation
towards the base of a sequence ranging in age from late Palaeocene
to Miocene, dominated by hemipelagic mudstones and occasional
sandstones. Details about the geology can be found in Newton &
Flanagan (1993). We invert a shot gather from over the ‘Area 12’
outlier oil bearing area, close to the 12Z well. Full waveform OBC
data from this field have been inverted by Sears et al. (2010) and
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Figure 7. Marginal posterior PDFs with depth for the synthetic inversion. Darker shading corresponds to higher probability density in the first five panels
from the left. The true model is given by the magenta line, and the two thin blue lines at every depth represent the 90 per cent Bayesian credible interval. The
red dashed line represents the median value of the elastic parameter at every depth. The last panel to the right shows the probability that the data require an
interface to be present in the model, that is, require a change in elastic parameters with depth. Changes en masse in the parameter PDFs of Vp, Vs and ρ enable
us to delineate the reservoir with associated uncertainty.

Figure 8. (a) PDF on the number of interfaces required to fit the observations. The true number is 11, and this plot displays the uncertainty in the parametrization
and the rationale for using trans-D. (b) The implicitly sampled ML wavelet (top) spectrum from 500 models, and the true wavelet used to calculate the synthetics
(bottom). The inversion was not privy to knowledge of the true source spectrum. This again shows that our ML source spectrum estimation scheme is working
well.

Sears (2007). Their work inverts multicomponent data from the
whole cable within a deterministic framework with careful pre-
processing (which is significantly less work than the conventional
seismic processing and migration workflow), and a three-stage in-
version approach requiring inversion of short and then intermediate
wavelengths and then again short wavelength features. They also
require a good starting velocity model as do most deterministic FWI
methods. We restrict ourselves to inverting only the pressure field
(with subsurface mode conversions) from one raw shot gather with
virtually no pre-processing of the raw, unmigrated data as we re-
ceived it. As with the synthetic example, we transform raw T-X data
(Fig. 9a) to the F-X domain (Fig. 9b), and then perform inversion at
the same set of 18 frequencies from 5 to 13.5 Hz (Fig. 10) within a
similar set of prior elastic parameters as for the synthetic case. We

also start our inversion with a randomly selected two layered model
within the prior bounds. For this shot, the inverted pressure field
was recorded at hydrophones along the cable at a receiver spacing
of 25 m, with the first offset at 246 m and the last at 3.8 km. It must
be noted at the outset from Fig. 10 that the shot gather as we received
it, shows ‘ripples’ with offset. This is the hallmark of some kind of
wavenumber based noise removal filtering—this artefact is present
in the T-X domain data and cannot be eliminated. Unfortunately the
data are at this point 17 yr old (see Sears et al. 2010, for detailed
acquisition parameters) and we could not go back any further to
more ‘raw’ data. We may expect some degree of correlation in the
inversion residuals right at the outset, as the forward model physics
will only be able to reproduce the propagation part of the observed
signal, not the subsequent (unknown) processing. Thus, unlike the
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Trans-dimensional inversion of Alba field OBC data 925

Figure 9. (a) Alba OBC shot 1273. We invert offsets from 246 m to 3.8 km, at a hydrophone spacing of 25 m. (b) Like for the synthetic example, we Fourier
transform every trace in panel (a) to the frequency domain. The resulting F-X amplitude spectrum is shown in dB relative to maximum amplitude near 20 Hz
at 246 m offset.

Figure 10. Selection of noisy frequency-offset data for Alba OBC hydrophone data inversion: Top: zooming into Fig. 9(b). Middle: decimated version of
the top row, with frequencies sampled every 0.5 Hz. Bottom: the same as the middle figure, pressure field variation with offset at each of the frequencies for
inversion. All amplitudes are in dB relative to the maximum amplitude near 20 Hz and 246 m offset. Note the presence of ripples in the observations with
offset at all frequencies—either a filtering or acquisition artefact. We expect this ripple to manifest in correlated inversion residuals as it cannot be modelled
by the physics of the wave equation.

synthetic noisy data inversion, we would expect our data residuals
post inversion to be correlated, but like in the synthetic inversion,
they should be unbiased and zero mean Gaussian.

As with the synthetic data, we first examine 500 randomly se-
lected models from the posterior model ensemble p(m|d) for this
inversion. Their data fits and residuals are shown in Figs 11 and 12.
From the data fits of the pressure field amplitude, it is evident that

our inversion scheme has worked well. The high frequencies have
been fit remarkably, reproducing satisfactorily all the notches in
the wavefield at frequencies higher than 9 Hz. For the lower fre-
quencies, the effects of the input data ripple are evident, though
the long wavelength part is again well accounted for. The ‘dinosaur
back’ like features in the observed wavefield cannot be modelled,
and lead to spatial correlation in the residuals at all frequencies
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Figure 11. Pressure field amplitude with offset at the 18 inverted frequencies for the Alba OBC hydrophone data. The observations are shown in black. 500
responses due to models randomly selected from p(m|d) are shown in grey. Both calculated and observed fields are shown in dB relative to 1 unit of observed
pressure. The data match is quite healthy, ignoring the expected ripple that cannot be modelled. Long wavelength trends at low frequencies are well reproduced,
as are the notches at high frequencies.

as seen in Fig. 12. However, we expected this at the outset, and
encouragingly, our normalized inversion residuals are unbiased and
zero mean Gaussian (Fig. 13). Methods of sampling correlated noise
during the inversion or using a sampled correlation matrix do exist
(Dosso et al. 2006; Steininger et al. 2013; Dettmer et al. 2015;
Gehrmann et al. 2015a,b), but given our experience with them (Ray
et al. 2013b) and the challenges associated with them (Bodin et al.
2012; Dettmer et al. 2015), we consider these methods to be outside
the scope of this paper. The posterior ensemble of models p(m|d)
have been marginalized with depth and shown in Fig. 14. As with
the synthetic example, darker shading in the first five panels from
the left correspond to higher PDF values. We see that for both the
compressional and shear velocities, the 90 per cent credible inter-
vals (between the blue lines) are bounded quite tightly till about
1400 m depth. Thus it appears that the background velocity trends
have been quite well estimated in the shallower sections. They are
in good agreement with the work of Sears (2007). As expected,
the PDFs of velocity get broader with depth, indicating a loss of

resolution with depth. The seismic quality factors are not well re-
solved, as expected from the synthetic examples. The pronounced
velocity changes between 1400 m and 1500 m depth correspond
to the inferred depth of the Upper Oligocene horizon (Lonergan &
Cartwright 1999, blue dashed horizontal line in the interface PDF
plot). The reservoir sections in Area 12 correspond to depths be-
tween 1.8 to 2.5 km, as reported by (Sears et al. 2010). To our
obvious delight, we do see the PDFs of Vp increase and those of ρ

decrease, exhibiting similar behaviour as in our synthetic examples
(Fig. 7), at an approximate depth of just over 2 km, indicative of
reservoir. The results of (Sears et al. 2010) also show a low velocity
interval and then a high velocity spike in Vp at about 2.5 km s−1,
indicative of reservoir in Area 12, at a depth below 2 km (magenta
dashed horizontal line in the interface PDF plot). Further, the PDFs
of Vs show a small spike near 2 km depth at approximately 1.5 km
s−1 in the reservoir section, also reported by Sears et al. (2010).

The number of interfaces required to fit the data are shown in
Fig. 15(a). We allowed for a max of 45 interfaces (46 layers), and
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Trans-dimensional inversion of Alba field OBC data 927

Figure 12. Inversion residuals with offset at 18 frequencies for the Alba OBC hydrophone data. 500 real (red) and imaginary (blue) residuals due to models
randomly selected from p(m|d) are shown. The complex data residuals have been normalized by the implicitly sampled ML data error. The residuals are
correlated as expected from Fig. 10, but importantly, they are unbiased about zero.

find that the mode is at 39 interfaces, with a spread around this value
indicating the non-uniqueness in the number of layers. Fig. 15(b)
displays a spectral comparison between a deghosted wavelet used
for standard post-migration amplitude versus offset work obtained
from a far field signature (Sears 2007), and the wavelet we sampled
implicitly using eq. (15) from 500 models. The results are similar,
with our sampled wavelet showing more ‘detail’ between 7 Hz and
10 Hz. If we had used the provided wavelet, it is likely that this
would have biased our results in some manner.

3.4.1 Time domain data fit for Alba shot gather

Since we collect and are familiar with data in the time domain, we
felt it would be useful to transfer our frequency domain results to the
time domain. From the point of view of physics, both domains offer
equivalent descriptions of the same wave phenomena. However,
we only inverted a discrete set of frequencies and found the ML
wavelet for this set of frequencies between 5 Hz and 13.5 Hz.
Therefore, the forward modelled data for any inverted model in
p(m|d) do not contain the full spectrum of responses for inverse
Fourier transformation to the time domain. Under a certain set of
assumptions however, we can forward calculate a shot gather in
time, from any of the models in p(m|d).

We assume that the inverted models at our discrete set of frequen-
cies f, will provide ‘reasonable’ forward responses for all frequen-
cies in the band [min (f), max (f)]. After computing the ML wavelet
at frequencies not inverted, we can forward calculate the pressure
field at these frequencies using eqs (15) and (27). We calculated
these responses at a frequency interval of 0.12 Hz, corresponding
to a record length of 8.19 s, and constructed the frequency response
from 0.12 Hz till 40 Hz. We multiplied these responses within [0.12,
40] Hz with a zero-phase bandpass filter corresponding to the range
[5, 13.5] Hz since we assume that our frequency responses are valid
only in this range. We then inverse Fourier transformed these re-
sponses at every hydrophone location to produce a time domain
shot gather. Finally for comparison’s sake, we applied the same
bandpass to the input shot gather, and display both the input gather
and the modelled time domain gather (per inverted model) using
the same colour scale, in the same frequency band, side by side.
The results are shown in Fig. 16 for two models, together with the
mean calculated data from 60 inverted models. Interfering events
associated with the reservoir depths are found 1.6 s –1.7 s onwards
at the closest offsets.

These ‘butterfly’ plots show a remarkable fit in the time domain,
especially the headwaves, diving waves and early near offset reflec-
tions, indicating that our inversion scheme together with the elastic
model physics work well in reproducing reflections, wide angle
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Figure 13. PDFs of normalized inversion residuals for the Alba OBC hydrophone data obtained from 500 models. For each frequency, an analytic standard
Gaussian PDF is shown in black, and the real and imaginary residuals are shown in red and blue, respectively. The complex data residuals have been normalized
by the implicitly sampled ML data error. To a large degree, we are not far removed from the assumption of Gaussian data error.

refractions, multiples as well as mode conversions. This also con-
firms that we do not need finer resolution in frequency for our
inversion purposes - though we would probably have produced an
even better time domain match if we had.

4 C O N C LU S I O N S

We have successfully implemented a flexibly parametrized trans-D
Bayesian inversion using reversible jump McMC for the frequency
domain elastic FWI problem. We have also demonstrated the equiva-
lence of time domain and frequency domain approaches by showing
data fits in both domains. The flexibility in model parametrization
and the absence of arbitrary correlation or regularization are essen-
tial for a data-driven inversion of anomalous elastic parameters and
the associated background, especially when starting with poor prior
knowledge of the subsurface. The noise model we describe and
the ML methodology for estimating source and noise parameters
(Section 2) is quite general and applicable to wave propagators
for 2-D or 3-D earth models. Synthetic studies were carried out
to understand the model space and uncertainty associated with a
deep target in a shallow water environment. As established in Ray
et al. (2014), following the spatial changes in posterior PDFs of
model parameters (e.g. towards high velocities or low densities)

is far more valuable in delineating anomalies within the earth as
opposed to following the changes in either a single model (as in
deterministic inversion) or a statistic of the posterior PDF (such as
the mode). Our inversion of shallow water OBC data from the Alba
survey was successfully able to recover both the background Vp and
Vs, with a good indication of the depth of the reservoir as well as
the Upper Oligocene horizon in the Area 12 part of the field. Com-
parison with previous work (Sears 2007; Sears et al. 2010) showed
good agreement between the Bayesian and deterministic results. It
must be noted that unlike (Sears et al. 2010) we did not require an
accurate start model, nor careful data pre-conditioning (Virieux &
Operto 2009) to arrive at our results, which were in good agreement
with nearby well log data.

Our computations required 100 CPU nodes within a high per-
formance computing cluster to sample the trans-D posterior model
PDFs. As this is a first effort, we did not try to optimize our resource
utilization. The synthetic example required 1 day to converge to a
stationary posterior model sample, whereas the real data inversion
required 3 days to achieve stationarity. More details on convergence
can be found in the Appendix B6. Though not intuitive, it is well
known that McMC methods require longer sampling times for data
with very high SNR (or artificially high SNR after processing as
in the case of Alba), as discussed by Brooks & Neil Frazer (2005).
We recommend an approach of being as close to the raw gathers as
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Figure 14. Marginal posterior PDFs with depth for the Alba OBC data inversion. Darker shading corresponds to higher probability density in the first five
panels from the left. The two thin blue lines at every depth represent the 90 per cent Bayesian credible interval. The last panel to the right shows the probability
that the data require an interface to be present in the model, that is, require a change in elastic parameters with depth. Changes en masse in the parameter
PDFs of Vp, Vs and ρ enable us to delineate a ‘reservoir like interval’ just below 2000 m depth (magenta dashed line in rightmost column, as also inverted by
Sears et al. (2010)), with associated uncertainty and a thickness of about 100 m. Also well estimated is a sharp velocity change corresponding to the Upper
Oligocene horizon (dashed green line in rightmost column) at a depth of ∼1.5 km.

Figure 15. (a) PDF on the number of interfaces required to fit the Alba OBC observations. This plot displays the uncertainty in the parametrization and the
rationale for using trans-D. (b) The implicitly sampled ML wavelet (top) spectrum from 500 models, and the source deghosted wavelet provided from a far-field
signature (bottom). If we had used the provided wavelet, it is likely that this would have biased our results in some manner, further showing the usefulness of
the ML estimated source spectrum.

is possible, removing obvious outlier data which would not satisfy
an L2 norm and applying minimal processing to the data, so as to
remain true to our likelihood function (29). As discussed recently
by Dettmer et al. (2015) for seismic receiver function inversion, it is
better to invert data directly than to process it for making inferences
about the earth, as processing can lead to a true model likelihood
that cannot accurately be represented by our theory. Our forward
code was not particularly optimized for parallel computation, and
with rapid advances in GPU computing (e.g. Komatitsch et al. 2010;
Johnsen et al. 2015) as well as machine learning methodologies, to-
gether with the application of adjoint based methods (Plessix 2006)
to provide local gradients (as discussed in the Appendix B6) we

are already at the point where it is possible to postulate solving
geophysical Bayesian inversion problems with 2-D or 3-D propa-
gators and/or earth models (e.g. Bodin et al. 2009; Cordua et al.
2012; Dettmer & Dosso 2013; Ray et al. 2014; Rosas-Carbajal et al.
2015).
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Figure 16. (a,b) Bandpassed time domain comparison of observed shot
gather 1273 from the Alba field OBC data (left) and similarly bandpassed
response (right) from one model randomly selected from p(m|d). (c) Band-
passed time domain comparison of observed shot gather (left) and the mean
of similarly bandpassed responses (right) from 60 models randomly selected
from p(m|d).
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A P P E N D I X A : M A X I M U M L I K E L I H O O D

In order to derive the ML objective function (29) of Section 2 we
begin with the model likelihood L(m) for a circularly symmetric
Gaussian complex random variable:

L(m) = p(d|m)

=
n f∏
l=1

(
π

σ 2
l

nt

)−nr

exp

(
− [dl − fl(m)]†[dl − fl(m)]

σ 2
l /nt

)
, (A1)

− logL =
n f∑
l=1

{
log

(
π nr

(
σ 2

l

nt

)nr )

+ nt

σ 2
l

[dl − fl(m)]†[dl − fl(m)]

}
, (A2)

=
n f∑
l=1

{
nr log π + nr log

(
σ 2

l

nt

)
+ nt

σ 2
l

[dl − fl(m)]†[dl − fl(m)]

}
.

(A3)

For minimum of the negative log likelihood or square misfit, that is,
maximum of the log likelihood,

∂(− logL)

∂σl
= nr

nt

σ 2
l

2σl

nt
− 2

σ 3
l

nt [dl − fl(m)]†[dl − fl(m)] = 0,

(A4)

⇒ σ 2
l

nt
= 1

nr
[dl − fl(m)]†[dl − fl(m)], (A5)

Substituting eq. (A5) into eq. (A3),

− logL=
n f∑
l=1

[
nr log π + nr log

{
[dl − fl(m)]†[dl − fl(m)]

}
+nr

]
,

(A6)

=
n f∑
l=1

nr log
{

[dl − fl(m)]†[dl − fl(m)]
}
, (A7)

ignoring the constant terms not dependent on the data residual, we
have

− logL(m) = nr

n f∑
l=1

[dl − fl(m)]†[dl − fl(m)]. (A8)

A P P E N D I X B : M AT H E M AT I C A L
D E TA I L S F O R T H E
T R A N S - D I M E N S I O NA L A L G O R I T H M

B1 Trans-dimensional Bayesian inversion

In the simplest terms, the objective of trans-dimensional Bayesian
inversion is to sample the model PDF given by eq. (1). This is
achieved with the reversible jump algorithm by drawing candidate
earth models from a proposal PDF. These models are then examined
to see if they fall within geophysically sensible uniform bounds. If
a proposed model falls outside the prior PDF, it is rejected and the
Markov chain retains the previous model as the next model. If a
proposed model is within the prior bounds, an acceptance prob-
ability is calculated using a ratio of the proposal probability, the
prior probability and the likelihood of the candidate model with re-
spect to the previous model. The proposed model is either accepted
with the calculated probability and it becomes the next model in
the chain, or it is rejected and the previous model is retained as
the next in the chain. Complete details of this process are given
in the following section for the interested reader. As the algorithm
proceeds, hundreds of thousands of models are sampled, with a
data-driven addition or deletion of layer interfaces (‘birth/death’ in
RJ-McMC parlance), such that a chain of models, most of which
fit the data well within the noise, are retained at the end. To ensure
thorough sampling of this multidimensional parameter space, a par-
allel tempering algorithm (Swendsen & Wang 1987; Geyer 1991)
has been used. Details of our implementation can be found in Ray
et al. (2013a) with a particularly illuminating discussion given in
Sambridge (2013).

B2 The prior probability

The prior PDF contains information on our knowledge about the
subsurface independent of the survey data. This can be based on
data from well logs, seismic surveys, etc. In the trans-dimensional
formulation, we split the prior into 2 parts. One part contains infor-
mation about the number of interfaces k in the model, p(k). The other
part p(mk|k) in our particular case, contains information about the
physical parameters associated with a model mk of dimension k,
such as where these interfaces are in depth z, and what the k + 1
elastic layer parameters of these cells are Vp, νs, ρ, Qp, Qs. Please
note that since we parametrize with interfaces, for n interfaces we
will have n + 1 layers including a terminating half-space. In prac-
tice, we sample Poisson’s ratio ν uniformly and calculate Vs for
the given value of Vp and Poisson’s ratio. Using the chain rule of
probabilities, we write

p(m) = p(mk, k) = p(mk|k) × p(k). (B1)

where

mk = [z, Vp, ν, ρ, Qp, Qs], (B2)

= [z, me], (B3)
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where

z = [z1, . . . , zk], (B4)

Vp = [Vp1 , . . . , Vpk+1 ], (B5)

ν = [ν1, . . . , νk+1], (B6)

ρ = [ρ1, . . . , ρk+1], (B7)

Qp = [Q p1 , . . . , Q pk+1 ], (B8)

Qs = [Qs1 , . . . , Qsk+1 ]. (B9)

We use a uniform prior on k, given by

p(k) =
{

1
kmax−kmin+1 if kmin ≤ k ≤ kmax

0 else
. (B10)

We assume no a priori knowledge between the locations of in-
terfaces in the model and the elastic parameters me. These random
variables are independent and therefore their PDFs can be separated
in the following product form,

p(mk|k) = p(z|k)p(me|k). (B11)

Interfaces can be located anywhere in the depth range [zmin, zmax].
A given interface can be at any of k points within this depth. This
defines k + 1 subintervals, the sum of which is equal to �z = zmax

− zmin. The probability distribution of the segment lengths for the
analogous case of a rope of unit length cut randomly at k points, is the
Dirichlet distribution (e.g. Albert et al. 2011; Steininger et al. 2013).
For the case in which all segment lengths are equally probable, the
appropriate form of p(z|k) transformed to a length interval �z is
derived in detail by Dosso et al. (2014) and is given as:

p(z|k) = k!

�zk
. (B12)

This can intuitively be understood as there being k! possible ar-
rangements for interfaces uniformly distributed within a length �z.
Assuming that all k + 1 elastic parameters within a given model are
uniformly distributed, independent of each other, we can write

p(me|k) =
⎧⎨
⎩

[
1

�me

]k+1
if memin ≤ me ≤ memax

0 else
, (B13)

where me is any of the elastic parameters within a layer, and

�me = �Vp�ν�ρ�Q p�Qs, (B14)

corresponding to uniform property ranges of distribution within
each layer. To obtain the explicit expression for the prior model
probability, we write �k = kmax − kmin + 1 and substitute eqs
(B10)–(B13) into (B1) to get

p(m) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

k!
�zk · 1

�mk+1
e

· 1
�k if z ∈ [zmin, zmax],

me ∈ [memin , memax ],

∀k ∈ [kmin, kmax]

0 else

. (B15)

We mention here that we can parametrize Vp such that we sample
the range of Vp in the logarithm of the range. This can facilitate
sampling of a large range of Vp from the seafloor down to basement
depth. We found that this did not have a large effect on our posterior
PDF.

B3 Metropolis–Hastings algorithms and the acceptance
probability

What guides an McMC sampler like the Metropolis–Hastings (MH)
algorithm (Hastings 1970) to convergence upon the posterior model
PDF is the acceptance probability α (e.g. Liang et al. 2011). At
every step of the Markov chain, a candidate model is sampled by
perturbing the current model from a known PDF (the proposal PDF
q) and the acceptance α is calculated. A random number r is then
sampled uniformly from the interval [0,1]. If r < α the proposed
perturbation is accepted, else the old model is retained. The rationale
behind this algorithm can be explained by examining in more detail
the expression for α (Bodin & Sambridge 2009), where

α(m′|m) = min

[
1,

p(m′)
p(m)

× p(d|m′)
p(d|m)

× q(m|m′)
q(m′|m)

× |J|
]
. (B16)

Here m′ is the new proposed model and m is the old model (through-
out this paper, primes will denote new model values). Specifically,
p(m′)
p(m) is the prior ratio, p(d|m′)

p(d|m) is the likelihood ratio and q(m|m′)
q(m′ |m) is the

proposal ratio. The Jacobian term |J| is not to be confused with the
model Jacobian needed for gradient based inversions (e.g. Consta-
ble et al. 1987), but is a matrix that incorporates changes in model
dimension when moving from m to m′. In a classic MH algorithm
with a fixed number of dimensions, the prior ratio (for uniform pri-
ors), proposal ratio (for symmetric proposals), and Jacobian term
are all 1 (Dettmer et al. 2010). Hence the algorithm always moves
toward areas of higher posterior probability if the data misfit im-
proves (likelihood ratio >1). However, it can also move to areas of
lower posterior probability with a probability α if the misfit does
not improve (likelihood ratio <1).

To be able to compare likelihoods between models with different
numbers of parameters (i.e. with different dimensions), the Jacobian
in the acceptance term in eq. (B16) needs to be evaluated. There are
various implementations of RJ-McMC, and in all the examples cited
so far, a ‘birth-death’ scheme has been used. As shown in Bodin &
Sambridge (2009) and Dettmer et al. (2010) for the ‘birth-death’
RJ-McMC scheme, this Jacobian term is unity. We have adopted the
‘birth-death’ algorithm in this paper and shall not concern ourselves
with this Jacobian term any further.

B4 Outline of our algorithm

We start the algorithm with a very simple model, with k = kmin, typ-
ically a layer in contact with a half-space. We then allow the algo-
rithm to iteratively add interfaces (‘birth’) or remove them (‘death’),
perturbing the layer properties, as the data may demand via the ac-
ceptance probability α in (B16). In brief, this is how we proceed:

B4.1 Initialization

Start the algorithm with k = kmin and sample all parameters for each
layer uniformly from within our prior bounds.
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B4.2 Choose one of four moves

(1) Update: Perturb a randomly chosen layer property about its
current value using a Gaussian proposal q(m′|m) with a standard
deviation me , where

q(m′|m) = 1√
2πme

exp

[
− 1

22
me

(m ′
e − me)2

]
. (B17)

Note that this update move does not involve a change in the number
of interfaces.

(2) Birth of a new layer: k′ = k + 1. In the depth interval defined
by [zmin, zmax] randomly and with uniform probability we select an
unoccupied point and insert an interface. Uniformly sample Vp, νs,
ρ, Qp, Qs to assign properties for this layer.

(3) Death of an interface: k′ = k − 1. An existing interface is
selected at random and deleted.

(4) Move a layer interface: an existing interface is selected at
random and its position is perturbed by a Gaussian proposal with
standard deviation z . Note that this step does not involve a change
in the number of cells either.

At each step, one of these moves is chosen with a certain proba-
bility, such that the move probabilities sum to unity. In addition, the
birth and death probabilities must be set equal. We set the probabil-
ities as follows:

[update, birth, death, move] ≡
[

4

10
,

1

4
,

1

4
,

1

10

]
.

At each step of the Markov chain, the proposed model is evaluated
for acceptance. If it is accepted, it becomes the current model. If it
is rejected, the current model is preserved and the algorithm moves
on to the next step. In order to compute the acceptance, one needs
to evaluate eq. (B16), for which we explicitly describe the proposal
PDFs and their ratios in the next section.

B5 Proposal PDFs and acceptance probabilities

B5.1 Fixed dimension moves

For all moves that are neither birth nor death, the number of cells
remain fixed. In these moves, we have elected to use Gaussian
proposals to suggest the new model parameters by centring the
proposals on the old parameters and drawing a random number
from a normal PDF with a given standard deviation (step size).
We can see from eq. (B17) these kinds of moves are symmetric,
implying that the probability to go from the old state to the new
state is the same as it would be in going from the new state to the
old state:[

q(m|m′)
q(m′|m)

]
fixed

= 1. (B18)

Since the number of dimensions remains constant, the prior ratio in
eq. (B16) is 1. Hence for fixed dimension moves, we find that the
acceptance probability is simply the ratio of the likelihoods:

αf =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min

[
1,

p(d|m′)
p(d|m)

]
if z ∈ [zmin, zmax],

me ∈ [memin , memax ],

0 else

. (B19)

B5.2 Birth move

For a birth move, one can select any depth in the interval �z =
zmax − zmin. The birthed interface’s property values are drawn from
uniform distributions. Since the selection of a position and the
selection of property values are independent, we can write

q(m′|m) = 1

�z

1

�me
. (B20)

For the reverse move in a birth, keeping in mind that the current
state has k interfaces, there were k + 1 interfaces to delete from,
and the probability of removing elastic parameters in a layer in the
reverse move is 1. Thus we have

q(m|m′) = 1

(k + 1)
× 1. (B21)

It follows in a birth move, from eqs (B20) and (B21), that the
proposal ratio can be written as[

q(m|m′)
q(m′|m)

]
birth

= �z�me

k + 1
. (B22)

Finally from eqs (B15), (B16) and (B22) we get for the birth move
the following acceptance probability

αb =

⎧⎪⎨
⎪⎩

min

[
1,

p(d|m′)
p(d|m)

]
∀k ∈ [kmin, kmax]

0 else

. (B23)

B5.3 Death move

In a death move, one can select one of k interfaces for deletion.
Further, the probability of removing properties in a layer is certain.
Thus,

q(m′|m) = 1

k
× 1. (B24)

In the reverse move for death (i.e. birth) an interface is inserted at
random uniformly in the range �z. Further, the elastic properties
are uniformly assigned from the prior ranges. Hence,

q(m|m′) = 1

�z

1

�me
. (B25)

Thus we can see from eqs (B24) and (B25) that the proposal ratio
for death can be written as[

q(m|m′)
q(m′|m)

]
death

= k

�z�me
. (B26)

Again from eqs (B15), (B16) and (B26) we get for the death moves
the following acceptance probability

αd =

⎧⎪⎨
⎪⎩

min

[
1,

p(d|m′)
p(d|m)

]
∀k ∈ [kmin, kmax]

0 else

. (B27)

Thus, we get an acceptance probability for both birth and death that
is dependent only on the likelihood ratio, as must be the case if
we propose models from their prior distributions (e.g. Mosegaard
& Tarantola 1995; Malinverno 2002). Further, it should be noted
that the derived expressions for α in eqs (B19), (B23) and (B27) do
not involve a fictitious grid and are different from the expressions
derived in Ray et al. (2014) or Bodin & Sambridge (2009). This is
because we accept the findings of Dosso et al. (2014) and find that
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we obtain better sampling efficiency in proposing property values
from the prior for birth and death moves.

Though our derivation has not introduced the notion of a mini-
mum layer thickness, it could be valuable either for reasons of nu-
merical stability in the modelling algorithm or to increase sampling
efficiency by precluding models that are thought to be unresolvable.
We can easily incorporate the idea into the prior and proposal for-
mulations. The derivations of the acceptance probabilities for the
birth and death moves would change and involve order statistics as
shown by Malinverno (2002), but neither of the derived acceptance
probability formulae (B27) or (B23) would change. We advocate
that some care should be exercised in enforcing a minimum thick-
ness value. This is because thin layers may be resolved with low
shear velocities at high frequencies, and the full nonlinear problem
may have resolvability not readily apparent if we were to ignore
refractions and mode conversions—a similar point has been beauti-
fully phrased in the conclusions section of Mosegaard & Tarantola
(1995). Nonlinear resolution using trans-D is also discussed by
Galetti et al. (2015) for a tomography problem.

Finally, we mention here that in practice, the log of the accep-
tance probabilities are calculated and compared against the log of a
uniform random number between 0+ and 1. Taking log avoids many
problems of numerical stability in the evaluation of eq. (B16).

B6 Convergence to the posterior PDF

The algorithm is run for a given number of steps until it is deemed
to have collected enough samples to provide a reasonable estimate
of the posterior model PDF. There are a couple of caveats in this
regard, as there are with any McMC sampler (Liang et al. 2011). If
the algorithm is seeded with an initial model that is in a low posterior
probability region, it may take quite a few steps till it reaches a region
of high posterior probability, such that it begins to sample models,
most of which fit the data within the given data error. The number of
such required steps (which are subsequently discarded in the final
chain) is known in McMC parlance as the ‘burn-in’ period, which
depends on how well the proposal PDFs have been scaled (Chib &
Greenberg 1995). This brings us to the step sizes (scaling) in the
proposal PDFs in the form of the standard deviations me and z

required in the various proposals to generate a new candidate model.
The form of the proposal PDFs should ‘emulate’ the posterior for
efficient sampling, but since the posterior PDF may be complicated
(and unknown a priori), any kind of simple PDF, symmetric where
possible, can be used. The exact form of the proposal does not affect
the final solution, at least in theory.

The suitability of the step size for the problem at hand can be
examined by looking at the number of samples accepted in a large
interval of steps, referred to as the acceptance rate. If the acceptance
rate is too low, it means that the step sizes are too large as lots of steps
are falling outside the prior bounds or are being rejected as they land
in low probability (high misfit) areas. If the acceptance rate is too
high, then it implies that the algorithm is not exploring the model
space enough and will again be slow to converge upon the posterior
PDF. We discuss the details of acceptance rates attained with our
real data experiment after the discussion on parallel tempering at
the end of this section.

An attractive alternative could be to use adjoint based methods
(Plessix 2006) to provide local gradients at minimal computational
expense and construct model covariance matrices (Sen & Stoffa
2013) to step around the parameter space more efficiently (e.g.
Malinverno 2002; Minsley 2011).

While the sampled posterior should not depend on the size of the
steps taken, one has to factor in the optimality of the step size as
otherwise convergence will be very slow. For an illuminating dis-
cussion on this matter, one can refer to Chib & Greenberg (1995).
For further discussions on convergence diagnostics such as Potential
Scale Reduction Factors (Gelman & Rubin 1992) and the practical-
ity of their application, one can refer to Liang et al. (2011). When
the number of parameters is changing, as in RJ-McMC, it is very
challenging to assess convergence and this is still an active area of
research (Bodin & Sambridge 2009). A heuristic method to exam-
ine speed of convergence is to monitor the ‘distance’ travelled from
one sampling step to the next over a window of a certain number of
steps. We can project model parameter values on to an underlying
grid, and then look at the norm of the difference between grid values
for two successive models. We can then find the average distance
travelled over a given step size window.

The algorithm should be run long enough such that there is a
measure of stationarity achieved in the square misfit (negative log
likelihood) with iteration number, and that the posterior sample does
not change appreciably on the addition of more samples.

B6.1 Parallel tempering

Finally, to ensure that the inferred posterior is not biased due to
being trapped in local maxima (of the posterior probability), we
recommend that the algorithm be run with numerous McMC chains
at different likelihoods, ideally in parallel for computational effi-
ciency. The different likelihoods should be ‘tempered’ (Swendsen
& Wang 1987; Geyer 1991; Earl & Deem 2005) so as to provide
a sequence of easier to sample likelihoods which enable different
chains to exchange models between the different misfit spaces (i.e.
negative log likelihoods) according to another MH exchange crite-
rion:

α = Lhot(mcold)

Lhot(mhot)
· Lcold(mhot)

Lcold(mcold)
(B28)

Chains running at flattened likelihoods (‘hot’) which are easier
to sample can exchange models with chains running at the difficult
to sample (‘cold’), unbiased peaky likelihood (Dosso et al. 2012;
Ray et al. 2013a; Dettmer et al. 2015). Details of this method and
easy to implement pseudo-code can be found in Sambridge (2013).
An added attraction of the above exchange criterion (B28) is that it
can also run within an optimization framework using eq. (29)—this
could prove quite useful in escaping local misfit minima and cycle
skips for FWI.

In our implementation, we used 99 parallel tempering chains, at
equal intervals in the log of temperature from T = 1 (the target
unbiased sampling temperature) till T = 8 (the hottest temperature).
Posterior inferences are made from the target temperature. For the
Alba data example, the negative log likelihood (a measure of the
square misfit) with iteration number for these chains can be seen at
the top of Fig. B1, with each temperature being shown in a differ-
ent colour. The negative log likelihood (NLL) can be negative as
additive constants not dependent on the sampled model in eq. (A8)
have been ignored (as also noted by Sambridge 2013). The NLL
for the target chain at T = 1 has been shown in black. The higher
temperature chains have higher NLL values as they sample models
with worse misfit in an easier to sample (i.e. tempered) likelihood
space. The fact that chains transition from one NLL level to another
rapidly is indicative of good chain mixing. This can be seen at all
NLLs after about 200 000 iterations. Details on implementing a
temperature ladder which facilitates chain mixing can be found in
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Figure B1. Top: for the Alba data inversion, negative log likelihood (representative of the squared misfit) per chain for all McMC chains, with the target
chain shown in black. Model exchanges between chains in parallel tempering can be seen in the NLL transitions between chains. The high-temperature chains
converge slowly, sampling a flattened likelihood. Model exchanges enable the lower temperature chains sampling peaky likelihoods to escape local misfit
minima. Bottom: the number of interfaces sampled by different chains as sampling progresses, with the target chain shown in black. Lower temperature chains,
sampling a peaky multimodal likelihood tend to have more interfaces.

Figure B2. Alba data inversion: percentage of accepted moves for each move type per 2000 steps, with each chain shown in a different colour and the target
chain in black. The hard to configure birth/death moves show a range of acceptance rates, with low acceptance rates of 1–2 per cent at the target temperature
(peakiest likelihood). As the higher temperature chains achieve birth/death rates of 5–10 per cent, exchanges with higher temperature chains ensure that the
target chain samples over a large range of interface numbers (as seen in the bottom row of Fig. B1). Qp and Qs show very high acceptance rates because of the
relative insensitivity of the data to these parameters.

Sambridge (2013). Taking a conservative approach, we deemed the
chains to have converged beyond 2 million samples (though we see
the chains begin to flatten much earlier) as an acceptable measure
of stationarity in the NLL was achieved. Our final posterior PDF
was inferred from the last 800000 samples in the target chain. We

applied chain thinning, using only every 100th sample to avoid cor-
relations between successively sampled models, thus making our
final posterior collection of models 8000 in number. The bottom
plot in Fig. B1 is a plot of the number of interfaces sampled with it-
eration number, with each chain shown in a different colour. Again,
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the target chain has been shown in black. In general, we find that
higher temperature chains tend to have a fewer number of interfaces
and be ‘rougher,’ since they sample flattened likelihoods at higher
misfits (e.g. Bodin et al. 2012; Ray et al. 2013a).

Finally, we present in Fig. B2 the acceptance rate per move type
for each of the McMC chains within our parallel tempering frame-
work. We get acceptance rates between 20–50 per cent for all moves
except birth/death and Qp, Qs attenuation updates. The high rates
for attenuation can be understood since the data are not very sensi-
tive to them, as the synthetic experiments have shown. Conversely,
our experience across different geophysical methods seems to indi-
cate that the more informative the problem about the subsurface (i.e.
higher resolution the method), the more difficult it is to obtain a high

birth/death acceptance rate. For the full wave elastic seismic prob-
lem, if the current model somewhat fits the observed seismogram,
it is hard to arbitrarily place or remove an interface across which a
wave can reflect, transmit and mode convert, while still fitting the
observations. Thus, we get very low acceptance rates for birth/death
moves, especially at the target temperature. This is where parallel
tempering ensures that the target chain explores the posterior space
of models with different numbers of interfaces efficiently. As can
be seen in the bottom row of Fig. B1, the target chain transitions
quite easily between models that have anywhere between 28 and 45
interfaces owing to the fact that lower temperature chains are easily
able to exchange models with higher temperature chains that have
a different number of interfaces.
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