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S U M M A R Y 

Long-range, active-source airborne electromagnetic (AEM) systems for near-surface conduc- 
tivity imaging fall into two categories: helicopter (rotary-wing) borne or fixed-wing aircraft 
borne. A multitude of factors such as flying height, transmitter loop area and current, source 
waveforms, aerodynamic stability and data stacking times contribute to the geological resolv- 
ability of the subsurface. A comprehensive comparison of the relative merits of each system 

considering all such factors is difficult, but test flights over well-constrained subsurface ge- 
ology with downhole induction logs are extremely useful for resolution studies. Ho wever , 
given the non-linear nature of the electromagnetic inverse problem, handling transmitter–
receiver geometries in fixed-wing aircraft is especially challenging. As a consequence of this 
non-linearity, inspecting the closeness of downhole conductivities to deterministic inversion 

results is not sufficient for studying resolvability. A more comprehensive picture is provided by 

examining the variation in probability mass of the depth-wise Bayesian posterior conductivity 

distributions for each kind of AEM system within an information theoretic framework. For this 
purpose, probabilistic inversions of data must be carried out. Each acquiring system should fly 

over the same geology, survey noise levels must be measured and the same prior probabilities 
on conductivity must be used. With both synthetic models as well as real data from over the 
Menindee calibration range in New South Wales, Australia, we shed new light on the matter 
of AEM inverse model uncertainty. We do this using two information theoretic attributes de- 
rived from different Kullback–Leibler divergences—Bayesian information gain, and a strictly 

proper scoring rule, to assess posterior probabilities estimated by a novel Bayesian inversion 

scheme. The inversion marginalizes fixed-wing geometry attributes as generic nuisance pa- 
rameters during Markov chain sampling. This is the first time-domain AEM study we know 

of, that compares nuisance marginalized subsurface posterior conductivities from a fixed-wing 

system, with rotary-wing derived posterior conductivities. We also compare field results with 

induction log data where availab le. F inally, we estimate the information gain in each case via 
a covariate shift adaptation technique that has not been used before in geophysical work. Our 
findings have useful implications in AEM system selection, as well as in the design of better 
deterministic AEM inversion algorithms. 
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1  I N T RO D U C T I O N  

Airborne electromagnetic (AEM) systems have been in operation 
since the 1940s (P alack y & West 1991 ), primarily as a ‘bump- 
finding’ tool when qualitati vel y re vie wing data collected over large 
swathes of land. Since AEM data are acquired after pulsing the earth 
with an inducing, transmitted electromagnetic field, in accordance 
Formerly at: Geoscience Australia, Symonston ACT 2609, Australia. 
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with the principles of electromagnetic induction, the earth response 
is ‘anomalous’ in the presence of electrically conducting bodies. 
Such anomalies have often been associated with base-metal ores or 
saline groundwater accumulations within resistiv e earth. Howev er, 
qualitative approaches are unsatisfactory when trying to quantify the 
geoelectric structure of the earth, and such a quantification opens 
the doors to a far wider variety of applications (see Brodie 2010 , 
for a historical re vie w). To mention onl y a fe w, such applications 
include geotechnical investigations (e.g. Hodges 1999 ), mapping 
subtle subsurface conductivity contrasts (e.g. Worrall et al. 2001 ), 
 by Oxford University Press on behalf of The Royal Astronomical Society. 
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alaeovalley mapping (e.g. Eberle & Siemon 2006 ), hydrogeologi-
al investigations (e.g. Auken et al. 2017 ), national scale surv e ys for
apping subsurface architecture (e.g. Ley-Cooper et al. 2020 ) and
apping detailed river valley aquifer systems (e.g. Minsley et al.

021b ). 
To estimate the subsurface geoelectric structure responsible for

he recorded earth response, we need to convert the data from a
ime or frequency domain response to subsurface conductivity us-
ng Maxwell’s equations and inversion theory (e.g. Parker 1994 ;

enke 2012 ). For meaningful interpretation of the inverted electri-
al conductivity models and their spatial variation in terms of buried
eology, we require knowledge of model uncertainties. In principle,
hese uncertainties can be found by propagating the data uncertain-
ies through the inversion process all the way to the model estimates.
o wever , the electromagnetic inversion process is non-linear and
nstable. Consequently, workhorse approaches such as Occam’s in-
ersion linearize the problem and iterati vel y produce the smoothest
ossible conductivity model compatible with the data noise (Con-
table et al. 1987 ). There are various similar deterministic inversion
pproaches which also produce one single estimate of the subsur-
ace conductivity. They follow other regularization strategies and
an also incorporate prior information to produce acceptable con-
uctivity models which fit the geophysical data (e.g. Farquharson &
ldenburg 1998 ; Auken & Christiansen 2004 ). These methods can
roduce linearized estimates of uncertainty, which depend strongly
n the assumptions made in the regularization, as well as the start
odel for in version. W ith few exceptions (e.g. Kalscheuer et al.

010 ), non linear uncertainties are difficult to obtain deterministi-
ally and are usually found with Bayesian approaches (e.g. Taran-
ola & Valette 1982 ; Mosegaard & T arantola 1995 ; T arantola 2005 )
equiring an explicit or implicit declaration of prior earth struc-
ure, followed by posterior sampling using Markov chain Monte
arlo (McMC, e.g. Minsley et al. 2002 ; Minsley 2011 ; Blatter
t al. 2018 ; Ray & Myer 2019 ). An additional challenge for AEM
nversion is that the acquisition system geometries may in some
ases not be well known—leading to inaccuracies in the forward
odelling of geophysical data from estimated conductivity models.
s detailed by Brodie ( 2010 ), ambiguity in the transmitter or re-

eiver position as well as their roll, pitch and yaw, will creep into
he estimates of subsurface conductivity if they are not accounted
or in the inversion process. This is especially true of fixed-wing
EM systems where the transmitter (Tx) is usually centred on the

ircraft itself, and the receiver (Rx) ‘bird’ is towed some distance
ehind the aircraft. While we are not interested in transmitter or
eceiver rotations and positions in themselv es, e xcept as a quality
heck for the data and for safety purposes, they can be treated as
uisances during deterministic inversion as described by Brodie
 2010 ). Ho wever , these geometry parameters trade-off amongst
hemselves, as well as with the subsurface conductivity since they all
ontribute to changes in the modelled electromagnetic field. These
rade-offs make it even more difficult to correctly quantify the un-
ertainty associated with the electrical conductivity profiles of the
ubsurface. 

In this study, through nuisance marginalization we obtain the
osterior inverse model uncertainties of a technically mature, time-
omain fixed-wing system. Using information theoretic principles
ased on the K ullback–Leibler di vergence (henceforth abbre viated
s KLD, Kullback & Leibler 1951 ), we rigorously compare the in-
erse uncertainty of the fixed-wing system with that of a technically
ature, time-domain helicopter system. The KLD naturally leads to

he formulation of the logarithmic score, (a strictly proper scoring
ule, see Good 1952 ; Gneiting & Raftery 2007 ) as well as Bayesian
nformation gain (Lindley 1956 ; Chaloner & Verdinelli 1995 ; Ryan
003 ; Valentine & Sambridge 2020 ). For the information gain com-
utation, we use a covariate shift adaptation technique (Sugiyama
t al. 2008b , a ) that directly computes probability density ratios
rom posterior and prior samples. We believe that this has not been
sed before in near surface geophysics, and shows promise in other
elds such as geostatistical learning and online learning from time-
eries (e.g. Hoffimann et al. 2021 ; Chen et al. 2021 ). Although there
ave been uncertainty analyses of AEM data using Bayesian meth-
ds (e.g. Minsley 2011 ; Hawkins et al. 2018 ; Blatter et al. 2018 ;
insley et al. 2021a ) and deterministic spatial resolution investiga-

ions (e.g. Bedrosian et al. 2016 ), we are not aware of studies that
ave carried out fixed-wing geometry nuisance marginalization, or
ompared the resulting subsurface uncertainties with those of a low
ying helicopter system, while including deterministic inversions

n the analysis. 
While it is generally desirable to fly low and slow to achieve

igh signal-to-noise ratios, there are challenges to doing so which
ange from the technical to the practical. Pastoral activities and
arm animals are disturbed by low flying aircraft, there are safety
nd pilot fatigue issues with flying low for extended periods of
ime, and for rotary-wing surv e ys there are logistical difficulties in
errying and storing fuel drums within isolated acquisition areas
such as much of regional Australia). Through synthetic examples
s well as with real AEM data collected over the same stretch of
and, we show that the subsurface information content and inferred
eological model interpretability of both fixed-wing and helicopter
EM data compare fav ourab ly with each other as well as upscaled

nduction log data. 

 F I X E D  W I N G  A N D  H E L I C O P T E R  

Y S T E M S  

he details of casting the inverse problem to solve for system ge-
metries in time domain systems can be found in chapters 2 and
 of Brodie ( 2010 ). The most important geometry elements for a
xed-wing system were found to be the receiver pitch, as well as

he Tx–Rx inline (horizontal) and vertical separations (Fig. 1 ). It
as also ascertained that sufficient information for geometry esti-
ation is not found within the AEM provider supplied secondary
eld alone. The removed nominal primary field must be added back

nto the secondary field, and the total field must be inverted for both
eometry parameters as well as the earth conductivity model. In
his work, instead of parametrizing the vertical Tx–Rx separation,
e will focus on the height of the Rx bird (zRx), as we assume

hat the height of the Tx (i.e. aircraft height) is well known. For
elicopter systems (Fig. 1 ) we will assume that the Tx loop frame
s rigid and the Rx height relative to it is known and fixed, as is the
ase for many commercial systems. These assumptions are based
n historical data stemming from our acquisition of hundreds of
housands of line-km using the systems described above. 

A recent development for fixed-wing systems, is that we treat as
ata the amplitude of the joint X - and Z -component magnetic fields,
hat is 

B amp = 

√ 

B 

2 
x + B 

2 
z , (1) 

here B amp is a scalar. Ho wever , we note that B amp is observed as
 time-series at various ‘channels’ so both B amp and B x , B z will be
onsidered as vectors henceforth, in the linear algebra sense. For a
ayered Earth excited by a vertical magnetic dipole (i.e. a horizontal
urrent loop transmitter), there are no azimuthal components to the
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Figure 1. Helicopter (left-hand panel) and fixed-wing (right-hand panel) AEM systems. Helicopters typically fly lower and slower, and if the transmitter 
airframe is rigid, typically do not require geometry nuisance inversion. Fixed wing aircraft fly higher and faster, and the geometry nuisance parameters of 
importance have been marked in red. 

Figure 2. Noisy synthetics with nominal surv e y specifications and noise levels for a fixed-wing time-domain AEM system. The data correspond to the X - and 
Z- component magnetic fields recorded at each time channel. The synthetic model comprises 65 layers and is based on induction logs from an aquifer system 

in the Permian basin, TX, USA. 
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observed magnetic field (e.g. Loseth & Ursin 2007 ). As a conse- 
quence, many AEM providers do not usually provide Y- component 
data. The advantage of dealing with B amp as opposed to B x and 
B z jointly, is that irrespective of the rotation of the X and Z coils 
in the X –Z plane (i.e. regardless of receiver pitch), the amplitude 
of the joint vector field remains invariant. This obviates the need 
to invert for the Rx pitch, reducing the number of unknowns in 
the nuisance estimation. Of course, this comes at the expense of 
subsurface information which the individual X - and Z -components 
provide in a conventional joint inv ersion. Howev er, as we will see, 
there is not an appreciable difference with the resolving capabilities 
of the joint inversion, and the amplitude only inversions potentially 
remove troublesome conductivity artefacts at depth (Ley-Cooper & 

Brodie 2020 ). Using the theory of propagation of errors, assuming 
independence of the data errors in the X - and Z -components, the 
data error in B amp at each time channel can be derived from ( 1 ) as: 

σB amp = 

1 

B amp 

√ 

B 

2 
x σ

2 
B x 

+ B 

2 
z σ

2 
B z 

, (2) 
where σB x and σB z are the data errors in the X - and Z -components, 
respecti vel y. 

3  H I E R A RC H I C A L  B AY E S I A N  

S A M P L I N G  O F  A E M  N U I S A N C E S  A N D  

E A R  T H  P RO P E R  T I E S  

We now return to the matter of trade-offs between system geometry 
and earth conductivity. Using Bayesian inference in a hierarchical 
setting (e.g. Gelman 2006 ), we can estimate distributions over pa- 
rameters we are not interested in, to ensure that inferences over 
parameters of interest are unbiased. Nuisance estimation in this 
manner has a long and rich history in the Bayesian geophysical lit- 
erature: for traveltime inversion to estimate data noise (Malinverno 
& Briggs 2004 ), in geoacoustics to estimate source waveforms and 
data noise (Mecklenbrauker & Gerstoft 2000 ; Dettmer et al. 2010 ), 
with receiver functions to parametrize the likelihood (Bodin et al. 
2012 ), with magnetotellurics to estimate water column conductiv- 
ities (Blatter et al. 2018 ), to illustrate a few examples. For AEM 

art/ggad337_f1.eps
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Figure 3. Noisy synthetics with nominal surv e y specifications and noise 
levels for a dual moment, time-domain helicopter system, for the same 
aquifer model as shown in Fig. 2 . The data correspond to voltage in the Z 
receiver coil to measure changes in the magnetic field due to two independent 
exciting transients. 
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pplications, Minsley ( 2011 ) has considered reported transmitter
eights as uncertain and sampled them as a nuisance. Ho wever , ours
s the first application we are aware of, which treats the rotations
f the transmitter and receiver, as well as the transmitter–receiver
orizontal and vertical separations, as nuisances to be sampled for
 fixed-wing system. Possible reasons such literature is lacking are
hat handling passive and active frames of transmitter and receiver
otation is non-trivial (e.g. Fitterman & Yin 2004 ; Key & Lockwood
010 ), modifying inline separations requires careful changes to pre-
llocated Hankel filters for forw ard e v aluations (see Key 2012 , for
etails), and that a generic McMC inversion code which can han-
le an extensible number of nuisances is not easily available. As
art of this work, w e ha v e e xtended the generic trans-dimensional
aussian process (TDGP) McMC package (Ray & Myer 2019 ; Ray
021 ) to handle AEM forward models based on the time domain
EM codes of Blatter et al. ( 2018 ) and the rotation formulations
iven in chapter 2 of Brodie ( 2010 ). As these nuisances and earth
odel parameters (EM conductivity) are sampled jointly by the
cMC, all interparameter dependencies including non-linearities

an be captured. By marginalizing over the posterior nuisance pa-
ameters, the posterior conductivities are freed from bias. Within the
ermissible prior ranges of the geometry nuisances, corresponding
arth conductivities within their prior ranges are e xtensiv ely sam-
led according to their likelihood as determined by corresponding
ata misfits. All of this is done through the McMC in accordance
ith Bayes’ Theorem as detailed below. 

.1 Posterior sampling and parametrization 

or observed data d and models θm 

it can be written that: 

p( θm 

| d ) ∝ p ( d | θm 

) p ( θm 

) . (3) 

eading from right to left, p( θm 

) is the prior probability of θm 

, which
s known independent of the observations d . The prior importance
f θm 

is re-weighted by carrying out an AEM sounding which shows
ow likely it is that θm 

fits the observations. The probability of fit
s provided by the likelihood function p( d | θm 

) . The result of re-
ssessing or updating the prior importance of θm 

by the likelihood
f θm 

provides the posterior probability of observing the model θm 

.
his posterior probability is represented by the term p( θm 

| d ) . 
The likelihood function p( d | θm 

) for Gaussian data noise can be
ritten as: 

 ( θm ) = p( d | θm ) = 

1 √ | 2 πC d | 
exp 

⎛ 

⎝ − 1 

2 

[
f( θm ) − d 

]t 

C 

−1 
d 

[
f( θm ) − d 

]⎞ 

⎠ , (4) 

here [ f ( θm 

) − d ] is the residual vector of misfit for the model θm 

,
etween the forward model calculations for a given set of earth
onductivities as well as nuisances, and the AEM data. The covari-
nce matrix of data errors is gi ven b y C d . A Gaussian likelihood is
enerally justified by the application of stacking to increase signal-
o-noise ratios in geophysics, and AEM is no exception. Stacking
mplies Central Limiting for the resulting noise estimates on the
ean data, and hence the implication of Gaussianity for the like-

ihood function. The data error or noise model used throughout
his work is based on the noise model given in Green & Lane
 2003 ). The total noise is assumed to be due to two independent
ources: multiplicative noise proportional to signal amplitude, as
ell as high-altitude noise measured away from the effects of Earth
onducti vity, added to gether in quadrature. In AEM parlance, the
isfit measure φd is often used, with values close to 1 indicat-

ng a reasonable fit to within data noise. The more commonly
sed measure of RMS misfit in the broader geophysical EM lit-
rature is given by 

√ 

φd , where the likelihood and φd are related
s: 

p( d | θm 

) = 

1 √ | 2 πC d | exp 
(

− n data 
2 φd ( θm 

) 
)
, (5) 

⇒ φd ( θm 

) = 

1 
n data 

[ 
f( θm 

) − d 

] t 
C 

−1 
d 

[ 
f( θm 

) − d 

] 
, (6) 

r in other words, the χ 2 data error is φd times the number of data
 data . 

To be explicit about the model parametrization, we separate θm 

nto the earth resistivity θρ and the geometry nuisance parts θ n as
ollows: 

m 

= [ θρ, θ n ] . (7) 

esistivity is the inverse of electromagnetic conductivity, and
o span the various orders of magnitude of earth resistivity we
arametrize θρ through the base-10 logarithm of linear resistivities.
or sampling θρ , we use a reversible jump sampler (Green 1995 )
r trans-dimensional (trans-D) McMC as it is often referred to in
eophysics (Malinverno 2002 ; Sambridge et al. 2006 ; Bodin &
ambridge 2009 ; Dettmer et al. 2010 ; Ray & Key 2012 ; Gehrmann
t al. 2015 ; Ghalenoei et al. 2021 ). Ho wever , instead of using a
iecewise constant stair-step parametrization as is usually done for
-D, we use a Gaussian process basis (GP) as described in (Ray &
yer 2019 ). In addition to TDGP being spatial-dimension agnostic

e.g. Blatter et al. 2021 ), w e ha ve found it to be particularly w ell
uited to diffusion prob lems w hich require smooth parametriza-
ions. Sharp changes can be well represented with two GP inference
ayers as detailed in Ray ( 2021 ). Ho wever , we have found that AEM
ata do not generally support such sharp changes in the Earth and
 e ha ve opted to use the vanilla TDGP, that is trans-D McMC
ith birth and death of stationary GP nuclei (where stationarity

mplies an unchanging GP length scale over the model domain) in
 reversible jump framework as described in Ray & Myer ( 2019 ).
pecification of the prior for θρ is exactly the same as shown in
ection 2.5.2 of Ray ( 2021 ) for a resistivity model and will not be
epeated here. Priors for θ n are uncorrelated and uniform, ± a few
etres or degrees off from what is recorded during the AEM sur-
 e y. P articulars of prior probabilities are provided in the applications

art/ggad337_f3.eps


1892 A. Ray et al . 

Figure 4. Synthetic sounding conductivity posteriors with depth for (a) Fixed wing: conventional B x and B z joint inversion, (b) Fixed-wing: inversion of 
B field amplitude in receiver X –Z plane and (c) Helicopter: d B z /d t inversion. Hotter colours are more probable, and the true model has been overlain with 
a thick black line. The 5th, 50th and 95th percentiles of posterior conductivity are shown with dashed b lack-and-w hite lines. The deterministic inversion 
result has been plotted with a thick red-and-white line. (d) Information theoretic di vergence anal ysis: True model with prior probabilities in the background 
(left-hand panel), logarithmic score for each AEM system/inversion and probabilistic inversion (centre panel) and Bayesian information gain (right-hand 
panel). High logarithmic scores and high information gain indicate better adherence to the truth and posterior resolution, respecti vel y. For each inversion 
type, the summary plots at the bottom indicate 5th, 50th and 95th percentiles from scores and gains across all depths, with the filled triangle indicating the 
median. 
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The process of finding the posterior probability p( θm 

| d ) for vari- 
ous models θm 

admissible by the prior is repeated until an ensemble 
of models representative of the posterior probability density func- 
tion (PDF) p( θm 

| d ) is obtained. Sampling proportional to the pos- 
terior probability is carried out by using the following acceptance 
probability α to move from an Earth resistivity model vector or 
nuisance model vector θ to proposed model θ ′ in the McMC chain: 

α( θ ′ | θ) = min 

⎡ 

⎣ 1 , 

{ 

L ( θ ′ ) 
L ( θ) 

} 1 /T 
⎤ 

⎦ . (8) 

We note here, that for a uniform prior over the number of nuclei and 
when proposing from the prior resistivities for birth and death, for 
all TDGP moves, ( 8 ) provides the acceptance probability. All the 
TDGP move proposal probabilities q( θ, θ ′ ) are exactly the same as 
described in detail in Ray ( 2021 ). For symmetric fixed-dimensional 
proposals, when proposing from the prior, and for uniform pri- 
ors over the number of parameters, eq. ( 8 ) also holds for both 
fixed-dimensional or reversible jump Metropolis-Hastings–Green 
McMC (Metropolis et al. 1953 ; Hastings 1970 ; Geyer 2011 ). This 
is what we have used for sampling geometry nuisances and earth 
conductivities. Due to this choice of proposals, the move proba- 
bility terms q (.) never explicitly figure in calculation of the ac- 
ceptance probability term α in our algorithm (e.g. Agostinetti & 

Malinverno 2010 ; Dosso et al. 2014 ). The exponent 1/ T in ( 8 ) is an 
annealing factor for parallel tempering (Swendsen & Wang 1987 ) 
as described in Dettmer & Dosso ( 2012 ). Parallel tempering sig- 
nificantly accelerates the convergence to the posterior distribution 
(Dosso et al. 2012 , 2014 ; Sambridge 2013 ) and is used by de- 
fault in TDGP. The entire McMC algorithm encapsulated within a 
parallel tempering framework is described in Algorithm B within 
Appendix B . 
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Figure 5. Nuisance geometry posterior scatter plots and histograms for fixed-wing AEM: conventional B x and B z joint inversion. (a) Detailed view, with red 
symbols indicating deterministic inversion estimates and black symbols denoting true values. (b) Zoomed out view, this time with dashed lines showing prior 
bounds. 
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 S Y N T H E T I C  S T U DY:  I N F O R M AT I O N  

H E O RY  A N D  M A RG I NA L I Z AT I O N  O F  

E O M E T RY  N U I S A N C E S  

hile ground truth is in principle, the ultimate arbiter of the ac-
uracy of a geophysical investigation method, a synthetic study at
ne sounding location, with noise levels, Tx–Rx geometries and
ying heights typical of the systems under consideration is instruc-

ive. The transmitter waveforms, noise levels, nominal geometries
nd heights are sourced from the Menindee calibration range AEM
ights (Barlow 2019 ) that we will report on in a later section. As

n the real data example, the fixed-wing AEM system and the he-
icopter AEM system compared are widely used and technically

ature. Both have been found fit for purpose for various surv e ys
 e ha v e undertaken (e.g. Le y-Cooper 2021 , 2022 ) on the basis
f competitive bidding from various commercial entities that have
ncluded, but not been limited to these two systems. 

art/ggad337_f5.eps
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Figure 6. Nuisance geometry posterior scatter plots and histograms for 
fixed-wing AEM: Inversion of B field amplitude in receiver X –Z plane. 
Again, red and black symbols denote deterministic and true values, respec- 
ti vel y. Prior bounds are shown with dashed lines. Compared to the joint 
inversion posteriors in Fig. 5 , note that more of the prior space within the 
dashed lines has been occupied by the posterior samples. 
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The fixed-wing system (Fig. 1 ) compared was TEMPEST (Lane 
et al. 2000 ), with the transmitter loop placed 120 m above the 
ground, and the Tx–Rx vertical separation was set to 38 m, that 
is the receiver antennae were placed at zRx = 82 m above the 
ground. The Tx–Rx horizontal separation or hsep was set to 113 m, 
with Rx pitch set to 2 ◦. For the helicopter AEM comparison, we 
used a SkyTEM 312 system based on developments of the system 

originally described in Sorensen & Auken ( 2004 ). For the helicopter 
system (Fig. 1 ), the transmitter loop was placed 40 m above the 
ground, and the recei ver w as rigidl y fixed at a vertical separation of 
2 m above the transmitter, at a radial distance of 13 m from the loop 
centre, inline to the flight direction. 

The synthetic earth model used for the comparative study is a re- 
alistic earth model for shallow hydrological investigations, based on 
variations we would expect in a well-log. It features 65 layers with 
many small conductivity contrasts, one large conducting ‘layer’ be- 
tween 50 and 80 m depth and a resistive trend with depth. Forward 
modelling and noisy data for this earth model using both systems 
can be seen in Figs 2 and 3 . We ask readers to note that from here 
on, w e al wa ys ha ve conductivity increasing to the right and resis- 
tivity increasing to the left of all our resistivity axes. Further, we 
represent resistivity in log 10 units, in which a conductivity in S m 

−1 

or resistivity in �m are simply the ne gativ e of the other, being in- 
verses. There are undoubtedly differences in the spectral content of 
the source waveforms for both systems, especially given that the 
helicopter system considered here is a ‘dual moment’ system with 
two exciting transients that are interleaved together after acquisi- 
tion. It is also impossible to examine the uncertainty of inverted 
subsurface conductivity structures at all possible wavenumbers at 
all e xciting frequencies. Howev er, the utility of this synthetic study 
is twofold. First, it is not a closest-to-true model contest, as posterior 
uncertainties around both synthetic soundings will be inspected—
lower uncertainties in conductivity at depth imply greater resolution. 
Secondly, it sets the stage for examining posterior subsurface un- 
certainty for real data with hundreds of soundings along a flight line 
with v ariable geolo gy and established g round tr uth. Ho wever , we 
must make clear that practically speaking, we never have exact truth 
even when we have logged the earth within a drillhole. The effects 
of drilling mud, invasion, calibration errors and temporal (climatic 
and seasonal) changes between the acquisition of downhole induc- 
tion log conductivities and the above surface EM data acquisition, 
make exact comparison impossible. Ho wever , the surface geophys- 
ical data should still reflect well-constrained geology and property 
trends measured in the drillhole. We ask the reader to keep this in 
mind in the context of further references to ground truth or induc- 
tion logs in the text. For those wishing to investigate an additional 
synthetic model, another example based on a real well-log featuring 
a thin near-surface conductor and a deeper resistor can be found in 
Appendix E . 

Posterior uncertainties for both systems are shown in Figs 4 (a)–
(c). Note how the deterministic inversions almost al wa ys lie within 
the 90 per cent posterior credible intervals (CIs), the region be- 
tween the 5 and 95 per cent posterior percentiles. Further, while 
some deterministic inversion results are closer to the true value, 
the posterior uncertainties paint a different picture of uncertainty. 
The uncertainty with depth, qualitati vel y gi ven b y the width of the 
CI, is not markedly different between the amplitude only and heli- 
copter AEM posteriors. As expected, the posterior uncertainty for 
all three inversion types is least around the conducting ‘layer’ be- 
tween 50 and 80 m depth. In fact, for this model, it would appear 
that the fixed-wing ‘conventional’ inversion does well overall, with 
the width of the CI remaining roughly similar over all depths except 
at the conductor. The helicopter AEM posterior ho wever , seems to 
suggest that the top and bottom of the conductor can be separately 
resolved. It must be noted that w e a voided inverse crime: the for- 
ward modelling grid for both the deterministic and probabilistic 
inversions was identical, but coarser (only 50 cells) than the true 
65 cell modelling grid used to compute the synthetics. This was 
to emulate a measure of realism, as the true discretization of the 
earth is never known. As is the usual case, we overparametrized 
the modelling grid for the inversion, and an Occam regularization 
with a return to a resistive reference or ‘prejudice’ model (see Key 
2009 ) was used in the deterministic inversions. For the probabilistic 
inversions, the prior parameter resistivity bounds for all the deter- 
ministic inversions were uniform between the extremal limits of the 
lo g 10 conducti vities shown in Figs 4 (a)–(c). A correlation length of 
2 thickness units was used, and the birth/death trans-D GP method 
was allowed to place a maximum of 40 GP nuclei uniformly between 
the top and bottom of the model. The resulting GP nuclei resistivity 
values are interpolated onto the 50 cell grid which is fine enough 
to model accurately the geophysical features of interest in a spatial 
dimension-agnostic manner (e.g. Blatter et al. 2021 ). The correla- 
tion ensures that any thickness unit has an exponentially decreasing 
correlation with interpolated resistivities two thickness units above 
and below it. Although it may appear that infinitesimally thin layers 
are desirable to model, they are largely unresolvab le w hen using 
dif fusi ve electromagnetic physics as has been described in detail 
by Ray & Myer ( 2019 ) and Ray ( 2021 ). The GP kernel used to 
impose the correlation is the sidelobe averse Ornstein–Uhlenbeck 
kernel, which is described in detail by Rasmussen & Williams 
( 2006 ). 

4.1 Inf ormation theor etic anal ysis of posterior 
conductivities 

While we can gather a useful, qualitative idea of posterior uncer- 
tainty by inspecting Figs 4 (a)–(c), we have also provided a rigor- 
ous and quantitative information theoretic analysis using Kullback–
Leib ler divergences (F ig. 4 d). While the general geophysicist can 
follow the remainder of this section without specialized knowledge, 
we refer those interested in the details to Appendix D for a math- 
ematical discussion with proofs. With this in mind, we look at two 
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Figure 7. Test AEM line over Menindee Lakes, New South Wales, Australia, with logged boreholes shown in red. Note the transition from an arid Earth 
surface to the lake, midway along the test line. 
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iv ergences, as the y are known, which can heuristically but not
athematically, be thought of as ‘distances’ between probability

ensity functions (see Beier et al. 2002 ). The first such divergence
eads to a strictly proper scoring rule (Gneiting & Raftery 2007 ),
he logarithmic score, dating at least to Good ( 1952 ). In essence,
or a forecast density p ( · ), say a posterior density, we assign a
core log p ( x ) when the event x is actually observed. As shown with
qs ( D9 )–( D11 ), on average the highest score will be obtained for a
orecast probability density that equals the true probability density
f the observ ations, e ven if the true density is unknown. Naturally,
uch scoring systems have found heavy use in forecasting and al-
ied decision theoretic fields such as meteorolo gy, quantitati ve eco-
omics and finance, psychology and optimal energy usage (see Car-
alho 2016 ,for a review). In near surface or exploration geophysics,
ecent use of logarithmic scores can be found in Seill é & Visser
 2020 ) for selecting an optimal likelihood function, and Friedli
t al. ( 2022 ) for e v aluating dif ferent McMC proposal schemes for
 challenging high-dimensional inverse problem. This brings us to
he second divergence, known as the Bayesian information gain,
hich represents our increased knowledge of the subsurface with a

usually) narrower posterior density than the prior density we began
ith. In other words, the information gain represents the dimin-

shing overlap between the prior and posterior densities, a natural
roxy for Bayesian resolution as shown by Blatter et al. ( 2018 ) for
n Antarctic AEM surv e y. To e xamine these div ergences we be gin
y showing the true model and prior resistivity probability density
n the leftmost column of Fig. 4 (d). As discussed in Ray & Myer
 2019 ), though the McMC model parameter priors are uniform,
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Figure 8. Menindee test range: Dual moment helicopter EM system inversion. The top row shows the mean sampled φd and one standard deviation. The next 
three rows show the 5th, 50th (median) and 95th percentiles of posterior conductivity. Where all three percentiles are similar, the posterior conductivities are 
more probable. The display of percentiles and their spread simplifies the task of assessing interpretive uncertainty, as discussed in detail in the text. The dashed 
vertical line is nearest to a borehole with induction logs to be examined later in the text. 
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the resulting resistivities interpolated by the GP parametrization 
are not. Ho wever , similar to a bounded uniform distribution, the 
interpolated prior resistivities do not have a focussed mode. 

We follow Seill é & Visser ( 2020 ) and treat the posterior marginals 
as a forecast probability density, and the true model as the eventu- 
ating observation. We then fit a kernel density (Sheather & Jones 
1991 ) p z ( · ) to the marginal posterior samples at depth z and e v alu- 
ate the logarithmic score log p z ( m z ) for the true log 10 resistivity m z 

at depth z . In the middle column of Fig. 4 (d), we plot the logarithmic 
score for each system, with higher scores indicating better repre- 
sentation of the truth. There is ho wever , a large amount of overlap 
summarized by the quantile plots at the bottom, showing the overall 
5th, 50th and 95th percentiles of the score. Since there is only one 
score at each depth per inversion type, the summary percentiles 
are calculated from values across all depths. For decision theoretic 
problems, the forecast with the highest expected score is usually 
preferred (Diks et al. 2011 ). Ho wever , there is also a notable outlier 
score for the helicopter system which will skew the average score 
for that system downwards. This is because the posterior probability 
for all three systems at the bottom end of the true conductor is very 
small. Ho wever , it is not that the helicopter system does worse at 
localizing the conductor, there is a narrow high probability region 
onl y slightl y to the left, within half a conductivity decade (1 decade 
= 1 log 10 unit of resistivity or conductivity) at the outlying depth 
of ∼80 m in Fig. 4 (c). This problem with locality is a known issue 
with the logarithmic score, and is discussed in detail by (Br öcker & 

Smith 2007 ). The ne gativ e of the logarithmic score is known as ig- 
norance , and (near) zero prediction probability of the truth implies 
(high) infinite ignorance. This situation could easily occur as shown 
abov e, or for e xtremel y resisti ve media and inducti ve EM methods, 
as these methods are not sensitive to highly resistive media. Barring 
the outlier, the helicopter inversion does slightly better up shallow, 
and the fixed-wing joint inversion scores better deeper. 

In the rightmost column of Fig. 4 (d) we show the Bayesian in- 
formation gain, by calculating the KLD directly from the posterior 
and prior marginal samples at every depth. For this purpose, we 
use a covariate shift method (Sugiyama et al. 2008b ), as detailed in 
Appendix D . Such methods are adept at quantifying a shift between 
samples from two probability densities, such as samples from the 
prior and the posterior, or when there are sudden changes in online 
streaming data (Chen et al. 2021 ). A recent use of sample based 
covariate shift methods for geostatistical transfer learning can be 
found in Hoffimann et al. ( 2021 ). The information gain focuses 
very minutely on the overlap (or the lack of it) between the poste- 
rior and prior probability densities. As shown in Appendix D , it is 
al wa ys positive and only zero if the prior and posterior densities are 
identical. To first order, the information gain is small when poste- 
rior widths are lar ge, and lar ge when posterior widths are narrow, 
such as within the conductor between 50 and 80 m depth. This 
is an information theoretic counterpart of deterministic sensitivity, 
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Figure 9. Menindee test range: Fixed-wing AEM system conventional joint B x and B z inversion. The top row shows the mean sampled φd and one standard 
deviation. The next three rows show the 5th, 50th (median) and 95th percentiles of posterior conductivity. Where all three percentiles are similar, the posterior 
conductivities are more probable. With the exception of the deep conductors at −200 m, the first-order geology of the lake system is very similar to what is 
shown by the helicopter EM system in Fig. 8 . The dashed vertical line is nearest to a borehole with induction logs to be examined later. 
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s we know that TE mode inductive EM sources (Loseth & Ursin
007 ) are sensitive to conductors. Examining in detail, we see that
he information gain both above and below the conductor is small,
ut is slightly larger at shallow depths for all three inversion types.
his is as we would e xpect, giv en signal-to-noise considerations at

ate times as well as conductive shielding effects in electric media.
e would particularly like to draw attention to the fact that within

he conducting body itself, unlike for the logarithmic score, the in-
ormation gain remains large. This is due to the information gain
ot suffering from the aforementioned locality problem. In fact the
elicopter system has a tight posterior distribution at ∼80 m depth
ithin half a decade of the true v alue, accordingl y it has the highest

nformation gain. 
In the absence of ancillar y infor mation, no inversion/system

ould clearly outmatch the others. In all cases, from the marginal
osterior probabilities of resistivity with depth, we would interpret
he following. Starting from the top: resistive geology, between
.7 and 0.8 log 10 �m, followed by a conductor starting at ∼50 m
epth. Owing to conducti vity-thickness trade-of fs the fixed-wing
ystems/inversions do not narrow down the conductor bottom well,
hile the helicopter estimate of the bottom is slightly too shallow.
ll three systems have high probability mass in the conductor be-

ween 50 and 80 m in the vicinity of 1 �m or 1 S m 

−1 (i.e. 0 in
og 10 ). While we could point to information gain within the conduc-
or being higher for the helicopter system—contextually speaking,
his gain from 2–3 to 4 bits is not significant. Each bit of infor-
ation gain leads to reduction of half the prior probability mass

Pinkard & Waller 2022 ) or equi v alentl y, doubles the concentration
f probability mass in the posterior. Since 80 per cent of posterior
onductivities are between 0.8 and −0.26 log 10 �m for the fixed-
ing system inversions at ∼70 m, halving the posterior probability
ass does not add significantly to inferred knowledge of a con-

uctor. For all three inversion types, at this depth we are able to
racket a 0 log 10 �m conductor within less than half a decade, in a
rior range spanning nearly 4 decades of resistivity. Underneath the
onductor , all three in versions indicate a return to resisti ve geolo gy
n the 2.7 to 0.1 log 10 �m range, with the fixed-wing/joint inversion
ndicating a slightly narrower high probability region. Finally, the
ox plots showing the 5th, 50th and 95th percentiles of informa-
ion gain for each system and their large overlap, are shown at the
ottom of the rightmost panel in Fig. 4 (d). Again, there is only one
alue of information gain at each depth for every inversion type,
onsequently the summary percentiles are calculated from values
cross all depths. As before, we see a large overlap and are able to
onfirm our earlier first order inspection of posterior quantiles with
his analysis. This is useful to note since most geophysicists or ge-
logists will not have computed information theoretic divergences
eadil y av ailable. Another useful measure of the overlap between
robability densities is the Bhattacharyya distance and related co-
fficient (Bhattacharyya 1943 ), which has been used in geophysical
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Figure 10. Menindee test range: Fixed-wing AEM system amplitude only inversion. The top row shows the mean sampled φd and one standard deviation. The 
next three rows show the 5th, 50th (median) and 95th percentiles of posterior conductivity. Again, with the exception of the deep conductors at −200 m in 
Fig. 9 , the first-order geology of the lake system is very similar to what is shown by the helicopter EM system in Fig. 8 . The dashed vertical line is nearest to a 
borehole with induction logs to be examined later. 
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work (Suba ši ́c et al. 2019 ), though it does not have a straightforward 
Bayesian interpretation. 

In conclusion, if it were for this particular synthetic model, the 
choice of system from a technical standpoint is largely equiva- 
lent. We can say this as the CI widths are similar noting the vari- 
ations discussed above, and neither the scoring rule nor informa- 
tion gain indicate without qualification, a superior system/inversion 
type. 

4.2 Inversion details and nuisance sampling 

All inversions converged to a rms value of 1. The probabilistic in- 
versions for both kinds of fixed-wing inversion were run with 7 
log-spaced parallel tempering chains, and for helicopter AEM in- 
version with 5, with a maximum annealing temperature of 2.5. A 

greater number of parallel chains are required for the fixed-wing 
inversions, as the inference problem with geometry nuisances is 
harder to sample. We had initially achieved stationarity well within 
400 000 samples in the target McMC chain at T = 1. Ho wever , 
to sample the near-zero probability regions and establish stable 
score estimates that avoid infinite ignorance, we ran each inversion 
type for 1 000 000 samples, discarding the first fifth to preclude 
the possibility of biased inference. Within the le gac y surv e y noise 
levels w e ha ve accumulated over the years, inverting for height 
has not made a significant difference to the conductivity model 
and we do not do so here either. We surmise this is because the 
helicopter AEM system studied here, which we hav e observ ed in 
operation, has a rigidly mounted Rx coil. The aerodynamically sta- 
ble Tx–Rx frame and its height are known well enough for this 
not to be inverted for. For conventional fixed-wing inversions (Fig. 
4 a), in addition to the earth conductivity, three more parameters 
need to be sampled (Fig. 5 ): the receiver pitch, the horizontal 
Tx–Rx separation (labelled Tx–Rx hsep) and the vertical Tx–Rx 
separation (equi v alentl y, w e ha ve kept fixed the Tx height, and in- 
verted the Rx height, labelled zRx). We make observations of note 
underneath: 

In Fig. 5 (a) the most probable nuisance model values and the 
truth do not coincide. Although other workers have encountered 
similar phenomena (e.g. Dettmer et al. 2015 , most probab le ver - 
sus true values in their fig. 4), we decided to investigate further. 
We ran the Bayesian inversion for 200 000 more samples with the 
same noise realization as in Fig. 2 , then did an independent run for 
1 000 000 samples. The longer run and independent restarts with 
the same data as in Fig. 2 persistently produced histograms where 
the true nuisance values are in the tail region. Further, the poste- 
rior conductivities among these runs are virtually indistinguishable 
from Fig. 4 (a). When compared with the prior extents (Fig. 5 b), the 
posterior distributions do appear more generally in the vicinity of 
the true v alues. Gi ven that the likelihood (Fig. 4 ) depends on the 
data noise—on running with a different random noise realization, 
we did indeed observe coincidence of true geometry values with 
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Figure 11. A comparison between probabilistic inversions (top three rows), deterministic inversions (bottom three rows) and induction logs (boxed, thin, tall 
rectangles on every row). The distance from the AEM flight line, together with the name of the well is shown once for fixed-wing and once for helicopter 
EM data. For example, the deepest logged borehole BHMAR23-1 is about 35 m away from both the helicopter and fixed-wing flights and 8 km from the 
southeastern end of the line. All rows show good general agreement with the wells, despite the logging and flying having occurred several years apart. 
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igh probability regions, resulting in minor differences with the
osterior conductivities presented in Fig. 4 a). 

We are extremely sensitive to the Tx–Rx separation, but receiver
itch and receiver height trade-off near linearly. This intuitively
akes sense—if the pitch decreases (antenna axis along flight line

ilts upwards) this could be compensated by the antenna origin being
ranslated closer to the ground. Ho wever , this implies that we cannot
esolve both receiver height and pitch, and perhaps the information
ontained in one ought to be enough for the inverse problem—with
 suitable rotation of the nuisance coordinate axes. Unfortunately,
his rotation of the axes is data dependent and we need to do an initial
ampling run to estimate a principle components rotation. Ho wever ,
 e ha ve found that it is indeed much more efficient to sample along

uch rotated parameter axes as shown by Yardim et al. ( 2006 ) for
adio-refractivity inversion and Dosso & Dettmer ( 2011 ) for geoa-
oustic inversion. An ef ficient alternati ve for sampling nuisances
ould be pseudomarginal methods and their correlated variant (see
ndrieu & Roberts 2009 ; Friedli et al. 2022 , for details). 
Though the nuisance prior bounds are based on what we would

xpect for errors from the onboard inertial measurement unit (IMU)
ensor and variability within a flightline—only a very small portion
f this prior volume is of posterior importance (i.e. a large part
f the boxed region with dashed lines in Fig. 5 b is empty model
pace). Finally, the posterior sampling surface is quite rugged (i.e.
at tails with sharp jagged dropoffs) as can be seen from the zoomed
n crossplots and marginals for both pitch and zRx in Fig. 5 (a).

ost real data McMC AEM inversions converge to stationarity
ell within 200 000 samples, but in order to draw robust conclusions

rom synthetics we hav e massiv ely ov ersampled as described above.
arallel and high performance computing (HPC) considerations
uring sampling have been laid out in Appendix C 

For an amplitude only inversion (Fig. 4 b) of the same data, we
o not need to estimate the Rx pitch and the posterior nuisances
re shown in Fig. 6 . Immediately, we see that the fraction of prior
olume required to solve the problem is greater and the poste-
ior surface is less rugged, denoting that the posterior is easier
o sample. While the deterministic estimate of the receiver height
uisance parameter is outside the prior range, the deterministic con-
uctivity model, which is ultimately the earth feature of interest, is
ithin the 90 per cent CI as can be seen from Fig. 4 (b). Undoubt-

dly, tweaking the regularization and constraints for the determin-
stic nuisances can lead to ‘better’ estimates of conductivity. Since
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Figure 12. Information gain at the Menindee test site for a) all system/inversion combinations. (b) The median information gain with depth across the surv e ys, 
with summary bars showing the 5th and 95th percentiles at every depth. Since geology can be quite variable at the same depth, the interval between the 5th and 
95th percentiles simply reflects this variability with depth. (c) The same as (b) but zoomed into the location nearest to BHGT14M1 with dashed lines indicating 
the information gain at that sounding location. 
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we do not know the true earth model for real data scenarios, we 
have not opted for such tweaking to keep the synthetic exercise 
meaningful. 

5  M E N I N D E E  C A L I B R AT I O N  L I N E ,  
N E W  S O U T H  WA L E S :  C O M PA R I S O N  

W I T H  B O R E H O L E S  A N D  I N F O R M AT I O N  

G A I N  

In the Broken Hill region of New South Wales, Australia, lie 
Menindee Lakes. Over one of these lakes we operate an AEM 

testing range. A 12-km-long flight line lies partly over arid ground 
and partly over a shallow ephemeral lake, co-incident with or very 
near boreholes with induction logs (Fig. 7 ). As will be shown later, 
downhole conductivities from these logs provide a useful compar- 
ison of inversion results with ground truth. This in turn allows us 
to assess within the limits of temporal (seasonal or climatic) vari- 
ation, the accuracy with which different AEM systems image the 
subsurface. It is unusual for the same surv e y line to be systemat- 
ically flown repeatedly by vendors (see Minsley et al. 2021a , for 
another example of overflown lines), especially in the presence of 
well-constrained geology and induction logs. Hence the Menindee 
test range has become a valuable proving ground for AEM technol- 
ogy. This holds true for testing mechanical features and electronic 
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Figure 13. Posterior distributions of conductivity with depth at borehole BHGT14M1 for (a) conventional fixed-wing B x and B z joint inversion, (b) fixed-wing 
amplitude only inversion and (c) helicopter d B z /d t inversion. The conductivity log has been overlain in cyan. Note the good agreement between the upscaled 
well-log (thin green line) with the variation in the credible interval as well as with the the median posterior conductivity. The well and the CIs both support a 
return to conductive media with depth as well as division into three zones discussed in the text. 

Figure 14. Data fits for 100 randomly selected posterior models at well BHGT14M1 for (a) conventional fixed-wing B x and B z joint inversion and (b) fixed-wing 
amplitude only inversion and (c) helicopter d B z /d t inversion. 
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nstrumentation of the AEM systems, as well as for inversion codes
nd modelling theory. 

In Fig. 8, we show the results from probabilistic inversions of
ll helicopter EM soundings inverted independently along the test
ine. At each sounding, McMC was carried out for 400 000 samples
n multiple parallelly tempered interacting chains, with the first
0 000 samples discarded in the burn-in phase. The first row from
he top shows the mean square misfit or φd , with a reasonable fit
o data given by the dashed line at φd = 1. The second, third and
ourth rows from the top show the 5th, 50th and 95th percentile
osterior conductivities with depth at every sounding. Similar to
he synthetic studies shown in F ig. 4 , w herever the percentiles show
imilar values, the CIs are narrow and hence imply greater posterior
ertainty . Conversely , a large spread from red to blue among the
hree percentile images indicate a broad CI and greater posterior
n certainty. In exactly the same format as just described, in Figs 9
nd 10 , we show the results for fixed-wing AEM data flown over
he test line. The closest location to a well studied borehole which
ntersects a known near surface regional conductor has been marked
n all three figures for closer inspection later in the text. First of all,
t is apparent from Figs 8 –10 that all three in versions sho w remark-
bly similar posterior uncertainties, with exactly the same priors on
onductivity, using the same geometry constraints for fixed-wing
ata as in the synthetic studies, all the while using measured high-
ltitude noise levels for the test flights. From the northwest to the
outheast, as we descend into the lake bed, the lake clearly shows
p in all percentiles as a resistive structure relative to its surround-
ngs. To the southeast, in the near surface, there appears to be a
ayer of clays which show up as conductive. It must be noted that
he helicopter system was flown in 2015 and the fixed-wing system
n 2017. Differences in the posterior conductivity percentiles be-
ween AEM systems, especially in the shallow tens of metres could
e due to differences in the subsurface water saturation in these
ears. 
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A major point of difference between all three inversions is the 
presence of relati vel y certain, deep conductors shown b y the joint 
inversion of fixed-wing data at −200 m relative to the Australian 
Height Datum (F ig. 9 ). Notab ly, these deep features are missing from 

F ig. 10 w hich uses the same input AEM data as the joint inversion. 
The presence of these features cannot be validated as there are no 
induction logs in their vicinity. Whether the helicopter system and 
the amplitude-only inversions fail to see these deep conductors, or 
whether they are artefacts, we are unable to say at this point. A more 
detailed examination of the fixed-wing nuisances is carried out in 
Appendix A . 

5.1 Comparison with borehole conductivities and 

deterministic inversion results 

Since it is difficult to show probabilistic results and induction log 
conductivities all together, we have taken the following approach: 
We display in each panel of Fig. 11 the median model (i.e. 50th 
percentile) from the probabilistic inversions. For the same data, in 
the remaining rows we show the results from a deterministic Oc- 
cam’s inversion. Please note that the comparison is only made in 
the shallow region as the boreholes do not extend deeper. The depth 
averaged induction-log conductivities have also been displayed on 
every panel. While comparing AEM bulk conductivities with down- 
hole induction-log conductivities we need to keep in mind that the 
footprint of the AEM system is far larger. Therefore, it is sufficient 
that the long-wavelength trends from the induction-log match the 
inverted AEM conductivities (see Davis & Hauser 2020 , and Ap- 
pendix E for a detailed comparison w orkflo w). We should also note 
that the wells were logged in different years from the AEM data ac- 
quisition. These caveats notwithstanding, there is good agreement 
between the probabilistic median model, deterministic inversions 
and the downhole conducti vity lo gs, for all systems. The fact that 
the deterministic inversion results are smoother than the median 
conductivity section for all systems can be attributed to the fact 
that the Occam method produces the smoothest model compatible 
with the data. The fixed-wing Occam inversions are smoother than 
their helicopter Occam counterparts, while the difference between 
systems is not so apparent in the probabilistic inversions. We conjec- 
ture that this is due to the all-at-once nature of the updating scheme 
for geometry nuisances and conductivity values in the non-linear 
deterministic inversion (see Brodie 2010 , for details). This presents 
itself as an opportunity to improve the existing update and/or 
regularization schemes that are currently in use for fixed-wing 
data. 

Another point of importance for geological interpretation when 
examining Figs 8 –11 , is that in the northwest half of the line the pos- 
terior percentiles indicate a return to resistive geology with depth 
as supported by the depth averaged conductivities in BHMAR63-1 
(Fig. 11 ). Ho wever , this is not clear from the deterministic in ver- 
sion (bottom three rows of Fig. 11 ) since the inverted models in 
this region could be returning to the resistive background model 
at depth and there is no good way to tell from the deterministic 
inversion alone. Similarly, within the lake itself to the southeast, 
borehole BHGT14M1 indicates a return to conductive formations 
at the bottom, as do all the deterministic inversions. Although the 
deterministic inversions shown here do not do so, a gradient-based 
inversion can prefer conductivities at 0log 10 �m due to minimum 

norm updates, and can skew conductive underneath shallow conduc- 
tors due to the absence of a resistive prejudice model. A probabilistic 
approach can preclude this scenario as well, if posterior probability 
mass moves towards conducting (e.g. near BHGT14M1). We look 
next in detail at borehole BHGT14M1, after examining the Bayesian 
information gain at all sounding locations for context. 

Fig. 12 (a) shows the Bayesian information gain for all surv e ys 
and inversions at all locations, calculated using the methods de- 
tailed in Appendix D . On average, the helicopter system shows a 
higher information gain nearer the surface, and the fixed-wing/joint 
in version sho ws higher gain as we go deeper (Fig. 12 b). All systems 
and inversions show increasing information gain in the near surface, 
where conductors are inferred. Keeping in mind the discussion in 
Section 4.1 on the synthetic example, we now examine the infor- 
mation gain (Fig. 12 c) and resolving capability of all systems in the 
near surface at BHGT14M1 (F ig. 13 ), w here there is a known strong 
conductor within the first 25 m, with well established knowledge of 
the aquifer system. 

F rom F ig. 13 it is apparent that for all three probabilistic in- 
versions, the posterior percentiles of conductivity follow the same 
trends as the induction log shown with a cyan trace. As mentioned 
earlier , o wing to the temporal changes that may have occurred in 
subsurface water content, as well the difference in induction log- 
ger and AEM system footprints, comparing more than the long- 
wavelength trends is inadvisable. To facilitate qualitative compari- 
son, the borehole conductivity has been upscaled to the resolution 
of the AEM data taking into consideration both the AEM system 

physics as well as the prior correlation length, as detailed in Ap- 
pendix E , using the methodology of Davis & Hauser ( 2020 ). The 
upscaled log takes into account different physics and data types, 
but uses the same priors on resistivity and a depth length scale of 
2 units. This is the same length scale as is used in the real data 
inversions, and the upscaled log is shown with a green line in each 
case (Figs 13 a–c). The induction log (cyan) intersects at least three 
distinct geological zones, which can be interpreted alongside the 
litholo gical lo g and groundw ater salinity measurements from dif- 
ferent intervals in the sequence. Zone 1 from ∼3 to 29 m coincides 
with v ariable conducti vity saturated clays of the Willotia Formation 
and upper Calivil Formation. Zone 2 from 25 to 49 m is of low 

conductivity down to about 40 m depth (reaching ∼1.4 log 10 �m) 
as it intersects stacked sand facies with fresh water from the Calivil 
aquifer , belo w which the resistivity decreases gradually to ∼0.4 
log 10 �m due to the presence of brackish water. Although induction 
log data was not acquired in the underlying Renmark formation 
(Zone 3), this unit is known to be more conductive than the overly- 
ing Calivil formation. While the helicopter data do indeed narrow 

down the posterior range at ∼10 m by about 1 bit as evidenced by 
both Figs 12 (c) and 13 (c), this could be due to temporal variation 
in near surface conductivity. More importantly at this depth, with 
all three inversion types, 0.1 log 10 �m is bracketed at most within 
an 80 per cent credible width of half a conductivity decade—giving 
good indication of a conductor. To summarize, the posterior resis- 
tivity from all three inversion types are consistent with and well 
supported by the borehole data as well as known hydro geolo gy. 
Fig. 14 assures us that the fits to AEM data at this spatial location 
nearest the borehole for all inversions are good and that the posterior 
conclusions drawn are sound. 

6  C O N C LU S I O N S  

From our study over the Menindee test site in New South Wales, 
Australia, as well as from synthetic experiments, we conclude 
the following: both the low flying helicopter and higher flying 
fixed-wing time domain AEM systems studied contain comparable 
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ubsurface information. This information largely reflects the true
eoelectrical profile—evidenced from the behaviour of inverted
osterior conductivities and information theoretic divergences with
epth, as well as the compatibility of conductivity CIs with long
avelength trends in upscaled induction logs. Prevalent determin-

stic fixed-wing AEM inversions are carried out using the nuisance
pdating strategies laid out in Brodie ( 2010 ), and given the sim-
larities in the probabilistic inversion posteriors for all systems
Figs 8 , 9 and 10 ), there is a possibility that this updating strat-
gy could be improved upon. If this possibility can be realized,
hen the last three rows of Fig. 11 from the top will look as sim-
lar to each other as do the first three rows. The implications of
uch an improvement are that the fixed-wing AusAEM dataset
 https://www.ef tf .ga.gov.au/ausaem ) covering nearly 60 per cent
f Australia can be re-inverted to provide greater detail at little
xtra cost compared to the acquisition of this massive dataset (Ley-
ooper & Brodie 2020 ). Finall y, we formall y present in this work

he amplitude only inversions for fixed-wing systems, and note that
hey appear to remove artefacts in the inversion process. Ho wever ,
e are unclear if the features removed could also be considered tar-
ets worthy of further geophysical investigation, especially if they
t to within noise in the joint inversion. 
Computational considerations for McMC based inversion have

een made in Appendix C . Our experience is that the cost of com-
ute is a small fraction of the surv e y acquisition costs including
obilization charges. This is especially true if we carry out de-

erministic inversions for all soundings, followed by probabilistic
nversions at a decimated set of locations. This ensures we can
ather the posterior probabilistic detail to properly characterize
he geological framework of interest and make land, water or re-
ource utilization decisions under uncertainty (e.g. Symington et al.
020 ). 

C K N OW L E D G M E N T S  

ll calculations were carried out using the Julia language (Bezanson
t al. 2012 , 2017 ), available under the MIT license. This study
as carried out as part of the Exploring for the Future program
 https://www.ef tf .ga.gov.au ) under the High Quality Geophysical
nalysis (HiQGA) module. 
This project was undertaken with computing resources and ser-

ices from the National Computational Infrastructure’s (NCI) Gadi
luster. The NCI is supported by the Australian Government. The
se of trade, product or firm names is for descriptive purposes only
nd does not imply endorsement by the Australian Government.
his paper is published with the permission of the CEO, Geoscience
ustralia. 

ATA  AVA I L A B I L I T Y  

ll software used in this work is under active development. Software
nd examples can be freely cloned from Geoscience Australia’s
fficial GitHub repositories: 

https://github.com/GeoscienceAustralia/HiQGA.jl 
https://github.com/GeoscienceAustralia/GA-AEM 
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I N G  I N V E R S I O N S  OV E R  M E N I N D E E  

ces are shown in this section, both for the conventional fixed-wing joint 
de only inversion (Fig. A2 ). The fact that the inverted nuisance values 

e measured IMU-provided values (orange) is not surprising, as the IMU 

s found some trade-off as was shown in the synthetic examples. What is 
 geometry nuisance inference, as in their absence, the data residual would 

 x and B z joint inversion over Menindee. The top row shows the mean sampled φd 

mpled receiver height, Tx–Rx horizontal separation and receiver pitch, as well as 
lly been measured during the surv e y. The last three rows, as before, show the 5th, 
 conductors at −200 m, there do not appear to be any sudden changes in geometry 

G O R I T H M  W I T H  N U I S A N C E  S A M P L I N G  

f our algorithm encapsulates a reversible jump or trans-dimensional step 
g at Line 11), contained within a parallel tempering loop (Lines 3-20), 

tivity models are exactly the same as described for stationary Gaussian 
es ordinary Metropolis–Hastings (Metropolis et al. 1953 ; Hastings 1970 ) 

s in number. 
teracting McMC chains to escape local misfit minima (i.e. likelihood 

McMC step using the following Metropolis–Hastings criterion (Swendsen 
2 ; Sambridge 2013 ): 

(B1) 
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A P P E N D I X  A :  N U I S A N C E S  F O R  F I X E D - W

The inverted conductivities as well as acquisition geometry nuisan
inversion (Fig. A1 ) and for the same input AEM data, the amplitu
(blue lines and shaded blue regions) do not al wa ys overlap with th
readings could be inaccurate, or it is possible that the inversion ha
important ho wever , is that the in version be parametrized to allow for
be propagated incorrectly into the inverted conductivities. 

Figure A1. Summary of posterior nuisances for conventional fixed-wing B
and one standard deviation. The next three rows show in blue the mean sa
their one standard deviation spread. Orange values indicate what has actua
50th (median) and 95th percentiles of posterior conductivity. Over the deep
during the flight which may otherwise cause artefacts. 

A P P E N D I X  B :  T R A N S - D I M E N S I O NA L  A L
A N D  PA R A L L E L  T E M P E R I N G  

As shown by the pseudocode provided in Algorithm B , one step o
(starting at Line 4), followed by a nuisance sampling step (startin
followed by a parallel tempering swap (Lines 21–28). 

Details of the trans-dimensional birth and death moves for resis
processes (Ray & Myer 2019 ; Ray 2021 ). The nuisance sampler us
for the fixed-wing geometry nuisance parameters which are n nuisance

Parallel tempering is used to exchange information between in
maxima). Temperatures or models are exchanged at the end of each 
& Wang 1987 ; Geyer 1991 ; Earl & Deem 2005 ; Dettmer et al. 201

αswap ( a, b) = min 

⎡ 

⎣ 1 , 

{ 

L ( θm b ) 

L ( θm a ) 

} 1 /T a { 

L ( θm a ) 

L ( θm b ) 

} 1 /T b 
⎤ 

⎦ . 

art/ggad337_fa1.eps
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Figure A2. Summary of posterior nuisances for fixed-wing amplitude only inversion over Menindee. The top row shows the mean sampled φd and one standard 
deviation. The next tw o ro ws sho w the sampled receiver height and Tx–Rx horizontal separation, as well as their one standard de viation spread. Orange v alues 
in these rows indicate what has actually been measured during the surv e y. The final three rows, as before, show the 5th, 50th (median) and 95th percentiles of 
posterior conductivity. The deep conductors at −200 m from the fixed-wing amplitude only inversion do not appear in these posterior summaries. 

Figure A3. Posterior conductivities obtained after forward modelling the well log conductivities (yellow line) at borehole BHGT14M1 at Menindee lakes for 
(a) joint B x , B z inversion, (b) amplitude only B field and (c) helicopter d B z /d t data. As in the main text, the dashed lines represent the 5, 50 and 95 percent 
posterior percentiles of conductivity. In each case, the posterior median has been used as the upscaled log for qualitative comparison in Fig. 13 . 

F ood maxima using ( B1 ) is ef fecti ve, see section 3.2 of Blatter et al. ( 2018 ). 
F ter-process communication to achieve the exact same effect as swapping 
m of the swap probability in ( B1 ), as they have already been e v aluated in the 
p

1 and 2.5. Details of setting a temperature ladder can be found in Dettmer 
e  required five temperatures and no nuisance sampling, whereas the fixed- 
w ger numbers of temperatures are required to sample rugged likelihoods. 
P 1 after sorting the chains by temperature. 
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or a description of why swapping models for escaping local likelih
or computational efficiency, temperatures are exchanged during in
odels. No likelihood computations are required in the calculation 

receding j loop on Line 3 of Algorithm B . 
All Markov chains were run at log-spaced temperatures between 

t al. ( 2012 ) and Ray et al. ( 2013 ). The helicopter AEM inversions
ing inversions used 7 temperatures with nuisance sampling. Lar
osterior inference is carried out only from models that are at T = 

art/ggad337_fa2.eps
art/ggad337_fa3.eps
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Algorithm B: Pseudocode for trans-dimensional McMC with nuisance sampling, and parallel tempering exchanges though a F isher -Yates shuffle (F isher & 

Yates 1938 ). 

M P U T I N G  C O N S I D E R AT I O N S  

re likelihood e v aluation (i.e. a forward call). Thus sampling the fixed-wing 
 sample the helicopter system posterior. For the real data examples, one 
–45 ms for the helicopter system. This e v aluation time is dominated by 
ce, if each McMC sample took less time than a few ms, the overhead in 
llel computation inefficient. Parallel tempering is not an embarrassingly 
changed between interacting chains. This can be seen from Algorithm B 

 each temperature, with the exchange of temperatures occurring on Line 
ntation of this exchange step to transfer the bare minimum information 

cient. 
h chain in parallel tempering, though we extended each sampling run to 

proximately 4.5 hr for the fixed-wing system on 7 + 1 CPUs, and 2.5 hr 
ager process for inter-CPU communication and each remaining CPU was 
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A P P E N D I X  C :  H I G H  P E R F O R M A N C E  C O

It can be seen from Algorithm B that the nuisance sampler does requi
system posterior requires twice as many forward calls as it does to
sampling step required 70-80 ms for the fixed-wing system, and 40
the forward evaluation for the 52 layer model. This is fortunate sin
inter-process communication per McMC step would make the para
parallel algorithm, owing to the requirement that information be ex
on Line 3, where an independent McMC sampling step is made at
21 of the algorithm. Care must be taken in the computer impleme
possible, in order to the make the inter-process communication effi

The real data examples required 200 000 McMC samples for eac
400 000 samples. For each sounding, 200 000 samples required ap
for the helicopter system on 5 + 1 CPUs. The + 1 indicates the man

art/ggad337_ufig1.eps
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a ficant improvement has been made in the HPC implementation of parallel 
t l. ( 2018 ), which was based on the parallel tempering implementation of 
R ent helicopter AEM sounding required 5 d to invert probabilistically. In 
o oundings for the fixed-wing system, and 160 soundings for the helicopter 
s explicit, an entire batch of 160 soundings were probabilistically inverted 
w t of 720 helicopter soundings over the Menindee test range required five 
b n a greater number of soundings can be parallelly inverted in a batch, and 
f tions can be made for the fixed-wing system. On average, the fixed-wing 
p  computational resources, due to nuisance sampling needing an additional 
f  precomputed Hankel transform e v aluations (future work). 

itten purely in Julia (v1.6, tested on v1.7-1.8). The deterministic inversion 
c he parallel computation in this study used 48-core @3.2 GHz Intel Xeon 
C

A I C  B A C KG RO U N D  

D

U ulation of information gain (Lindley 1956 ), in terms of the difference in 
i his is provided by the relative entropy between the two densities, known 
a he KLD is not symmetric between the densities that differ, and to avoid 
c LD for prior density q ( x ) and posterior density p ( x ) as defined in eq. (22) 
o

(D1) 

W , the information gain units are known as ‘nats’ and a change of base to 
2  will prove shortly, the KLD is zero if and only if the densities p and q 
a ty. We can gain a useful perspective on the KLD by looking at it as the 
e stributed according to the posterior, 

(D2) 

E ation gain from samples, and showing how the KLD leads to the deri v ation 
o Raftery 2007 ). 

D  

I d from their samples, it may be possible to anal yticall y compute the KLD. 
T g how well different methods approximate a known, Gaussian posterior 
f lation of the KLD is subject to the usual difficulties (Cui & Luo 2016 ) 
w e, as in our AEM inversion case. Histogram binning for p and q may be 
p gram bins. Another possibility is separately estimating densities for p and 
q he derived quantity p / q is unstable and may be be difficult to use. In cases 
w  advantageous to resort to direct methods for density ratio estimation (see 
S le requiring direct density ratio estimation in the geosciences can be found 
i  particular case of the Kullback-Leibler divergence, the Kullback–Leibler 
I  ) can be used ef fecti vel y for direct divergence estimation as detailed by 
S iven by the expected value under the posterior density, of the logarithm 

o three step process. First, with McMC realizations of prior and posterior 
s rnels directly to the ratio r ( x) = 

p( x) 
q( x) . In a second step, r ( x ) is computed 

f d from stored posterior samples. Finally, the mean of log r ( x ) provides the 
K rocedure selects the Gaussian kernel bandwidth to approximate r through 
c s solv ed to obtain the density ratio estimate (see Sugiyama et al. 2008a , 
f lihood e v aluations (i.e. forw ard calls), and the posterior samples must be 
o

D

S casts and have found heavy use in weather prediction and econometrics. 
A 7 ). A scoring r ule is proper, if incorrect forecast densities are expected 
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ssigned to McMC computation at a specified temperature. A signi
empering in this work compared to our earlier work in Blatter et a
ay et al. ( 2013 ). As noted by Blatter et al. ( 2018 ), one single-mom
ur current work, soundings were batched in parallel such that 120 s
ystem were carried out at the same time using 960 CPUs. To be 
ithin 2.5 hr for the helicopter system using 960 CPUs. The full se
atches and a total of 12.5 hr. If more CPUs are made available, the
ewer numbers of batches will be required in total. Similar calcula
osterior sampling results require twice as much time with the same
orw ard e v aluation—though this can perhaps be avoided b y reusing

The Bayesian inversion including the forward modeller code is wr
ode including the forward modeller is written in modern C ++ . T
ascade Lake nodes in the NCI’s Gadi cluster. 

P P E N D I X  D :  I N F O R M AT I O N  T H E O R E T

1 Relative entropy and information gain 

ncertainty analysis in a Bayesian sense naturally leads to the form
nformation when comparing the posterior and prior distributions. T
s the Kullback–Leibler divergence (Kullback & Leibler 1951 ). T
onfusion, for information gain we will use the definition of the K
f Valentine & Sambridge ( 2020 ): 

D KL ( p|| q) = 

∫ 
p( x ) log 

p( x ) 

q( x ) 
d x . 

hen this is computed with the natural logarithm as given in ( D1 )
 (i.e. multiplying ( D1 ) by log 2 e ) changes the units to bits. As we
re identical, otherwise it is al wa ys an unbounded positive quanti
xpectation of the log ratio of the posterior to the prior when x is di

D KL ( p|| q) = E x ∼p( x ) 

[
log 

p( x) 

q( x) 

]
. 

q. ( D2 ) sets the stage for both the estimation of the KLD as inform
f the logarithmic score, a strictly proper scoring rule (Gneiting & 

2 Density ratio estimation for Bayesian information gain

f the densities p and q , respecti vel y, can be parametricall y estimate
his is the approach followed by (Friedli et al. 2022 ) in assessin

or a linear inverse problem with a Gaussian prior. Ho wever , calcu
hen calculating entropy, if parametric approaches are not suitabl
roblematic as this will depend on the number and location of histo
 and then carrying out numerical or Monte Carlo integration, but t
here a density ratio p / q is the quantity of interest (as in ( D2 )), it is
ugiyama et al. 2012 , for a comprehensive review). A recent examp

n Hoffimann et al. ( 2021 ), for geostatistical transfer learning. In the
mportance Estimation Procedure (KLIEP, Sugiyama et al. 2008a
ugiyama et al. ( 2013 ). As can be seen from ( D2 ), the KLD is g
f the density ratio of the posterior to the prior. This is done in a 
amples, KLIEP is used to fit a linear combination of Gaussian ke
rom the KLIEP estimated density ratio function when x is simulate
LD as Bayesian information gain according to ( D2 ). The KLIEP p

ross-validation, and a constrained, conv e x optimisation problem i
or details). Sampling the prior is ine xpensiv e as it requires no like
btained as usual to solve the AEM Bayesian inverse problem. 

3 Logarithmic scoring rule 

coring rules are used to e v aluate the quality of probabilistic fore
 comprehensi ve re vie w can be found in Gneiting & Rafter y ( 200
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tly proper, if the maximum expected score attained is unique. While they 
nt applications in Seill é & Visser ( 2020 ) for selecting the best likelihood 
luating the performance of different Monte Carlo methods. We shall now 

 ( 1952 ), is related to the KLD, by first showing that the KLD is al wa ys 
n of D KL ( p || q ), not just for priors and posteriors, we can write for any two 

(D3) 

n substitute u → 

q 
p and take expectations with respect to p . We can thus 

(D4) 

(D5) 

 can say that 

(D6) 

(D7) 

with no loss of generality that the KLD is al wa ys greater than zero unless 
garithmic scoring rule, and p and q are the true and forecast densities 
on Criterion (see Diks et al. 2011 ) for q as: 

(D8) 

(D9) 

(D10) 

(D11) 

e incorrect forecast score over all possible values x ∼ p ( x ) where p ( x ) is 
verage of the true forecast score, which is the integral on the right hand 
ed by the logarithmic scoring rule. Since the maximum expected forecast 
g rule is also strictly proper. 

ol to discriminate between two probability densities (e.g. MacKay 2003 ). 
n ( D1 ) represents the information gain after carrying out our geophysical 
, showing the information gain at all depths considered in the geophysical 
n the context of assigning scores to posterior predictions, if p is the true 
presents a strictly proper score. If we were to treat the posterior resistivity 
0 ) provides a strictly proper score, with higher values representing better 
he ne gativ e of the score defined in ( D10 ), we refer readers to Roulston & 

 domain of the physical sciences, this is done in terms of the width of 
wer certainty. In this regard, w e ha ve found the KLD for information gain 
rms of higher values indicating lower overlap between a narrow posterior 
y modes, and severely penalises narrow posteriors if they have missed true 
ng & Raftery ( 2007 ) and section 5, page 387 of Br öcker & Smith ( 2007 ). 
rameters in their geophysical simulations have true values that fall within 
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to receive lower scores than the true forecast density, and it is stric
have not been used much in near surface geophysics, we note rece
function for Bayesian inversion, and in Friedli et al. ( 2022 ) for e v a
prove that the logarithmic score, which dates back as far as Good
greater than or equal to zero. As ( D2 ) provides the general definitio
valid probability densities p and q : 

− D KL ( p|| q) = E x ∼p( x ) 

[ 
log 

q( x) 

p( x) 

] 
. 

Using the inequality 1 + log u ≤ u , with exact equality at 1, we ca
write: 

1 + E x ∼p( x ) 

[
log 

q( x) 

p( x) 

]
≤ E x ∼p( x ) 

[ 
q( x) 
p( x) 

] 
, 

1 + E x ∼p( x ) 

[
log 

q( x) 

p( x) 

]
≤ ∫ 

p( x ) q( x) 
p( x) dx . 

Now using the fact that 
∫ 

q( x) dx = 1 and using (D3) in ( D5), we

1 − D KL ( p|| q) ≤ 1 , 

thus proving that 

D KL ( p|| q) ≥ 0; with exact equality only at p( x ) = q( x ) ∀ x . 

The above inequality is known as Gibb’s inequality and establishes 
the two densities are identical. Now if we were to consider the lo
respecti vel y, then we can formulate the Kullback–Leibler Informati

D KL ( p|| q) = 

∫ 
p ( x) 

[ 
log p ( x) − log q( x) 

] 
dx ≥ 0 , 

⇒ 

∫ 
p( x ) log q( x ) dx ≤ ∫ 

p ( x) log p ( x) dx ∀ x . 

Inequality ( D9 ) establishes that for the logarithmic score 

S ( q, x ) = log q( x) , ∫ 
p( x ) S ( q, x ) dx ≤ ∫ 

p( x ) S ( p, x ) dx ∀ x . 

The integral on the left hand side of ( D11 ) is the expectation of th
the true density. This quantity is al wa ys less than or equal to the a
side of ( D11 ). This shows that the requirement of propriety is satisfi
score is reached uniquely for q ( x ) = p ( x ) ∀ x , the logarithmic scorin

D4 Summary of key information theoretic points 

The KLD or relative entropy is a very useful information theoretic to
When defined with p as posterior and q as prior, the KLD as given i
experiment. The KLD can be calculated at every location in the earth
inversion (e.g. Blatter et al. 2018 ; Valentine & Sambridge 2020 ). I
forecast distribution and q is the posterior, then S ( q , x ) = log q ( x ) re
as a prediction of the truth, then at every location in the earth ( D1
performance. For an interpretation in terms of ignorance, given by t
Smith ( 2002 ) as well as Weijs et al. ( 2010 ). 

It must be noted that for assessing posterior uncertainty, in the
quantities of interest. Broader ranges of probable values indicate lo
to be a more robust indicator of subsurface property resolution in te
and broad prior. The logarithmic score is very sensitive to probabilit
values. This is a source of debate; see section 4, page 366 of Gneiti
In fact, Friedli et al. ( 2022 ) report that only a certain fraction of pa
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t d as low probability regions will score very poorly (or ev en hav e infinite 
i osterior density. While other non-local scores exist, they can be relati vel y 
i  are not considered here. In sum, both logarithmic scores and information 
g  KLD. Ho wever , information gain can be estimated when true parameter 
v Criteria such as mean absolute error could be used to quantify closeness 
t gain for similar reasons. Fur ther, infor mation gain is not sensitive to true 
v nomenon which is common in non-linear geophysical inverse problems. 

A

I oir (flow) model, or for comparison with inversion results from surface 
g be compatible with the surface data. Due to their parsimonious nature, 
t is task. Using such methods, seismic well ties to adjust surface migration 
i tomated (Ray et al. 2022 ) and conductivity logs have been represented at 
t  problem we have followed the latter approach as it is directly applicable 
t ntation of the well log at the scale of above-ground geophysical systems, 
i  The synthetic posterior is obtained after inverting the forward modelled 
b the overflying AEM system. Using the measured surv e y data noise and 
w ach takes into account both the Earth filter due to AEM forward physics, 
a f prior length scale. The results of modelling the wells and sampling the 
p e have taken the median posterior conductivity, and used it to represent 
t

D
ow

nloaded from
 https
he range of the posterior samples. This is important to keep in min
gnorance =−log 0) and can bias the average score for a particular p
nsensitive to the width of probability modes (Smith et al. 2015 ) and
ain are useful analysis tools derived from appropriate usage of the
alues are not exactly known (i.e. most of the earth) for real data. 
o the truth, but again this is not as generally useful as information 
alues falling adjacent to high posterior probability regions—a phe

P P E N D I X  E :  W E L L - L O G  U P S C A L I N G  

n order to populate the static (or dynamic) properties of a reserv
eophysical data, borehole logs are often upscaled or adjusted to 
rans-dimensional methods have been found to be highly suited to th
maging results with downhole sonic logs have been successfully au
he resolution of AEM systems (Davis & Hauser 2020 ). For the AEM
o our case. Their thesis is elegant yet simple, that the best represe
s through a central tendency of synthetic posterior conductivities.
orehole conducti vity lo g using the transmitter characteristics of 
ithin the prior bounds given by borehole conductivities, this appro

s well as any assumptions made in the inversion such as choice o
osterior conductivities per AEM system are provided in Fig. A3. W
he long-wavelength features of the borehole log in Fig. 13 . 
C © The Author(s) 2023. Published by Oxford University Press on behalf of The Royal Astronomical Society. 
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